Free Access
Issue
A&A
Volume 504, Number 3, September IV 2009
Page(s) 689 - 703
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/200911697
Published online 09 July 2009
  1. Abramowitz, M., & Stegun, I. A. 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth edn. (New York: Dover) [Google Scholar]
  2. Benjamin, J., Heymans, C., Semboloni, E., et al. 2007, MNRAS, 381, 702 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Chiu, K.-C., Liu, Z.-Y., & Xu, L. 2003, in Proc. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 751 [Google Scholar]
  6. Comon, P., Jutten, C., & Hérault, J. 1991, Signal Processing, 24, 11 [CrossRef] [Google Scholar]
  7. Cooray, A., & Hu, W. 2001, ApJ, 554, 56 [NASA ADS] [CrossRef] [Google Scholar]
  8. Davison, A. C. 2003, Statistical Models, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press) [Google Scholar]
  9. Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, ApJS, 180, 306 [NASA ADS] [CrossRef] [Google Scholar]
  10. Eifler, T., Schneider, P., & Hartlap, J. 2009, A&A, 502, 721 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Erben, T., van Waerbeke, L., Bertin, E., Mellier, Y., & Schneider, P. 2001, A&A, 366, 717 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47 [NASA ADS] [CrossRef] [Google Scholar]
  13. Friedman, J., Stuetzle, W., & Schroeder, A. 1984, J. Am. Stat. Assoc., 79, 599 [CrossRef] [Google Scholar]
  14. Fu, L., Semboloni, E., Hoekstra, H., et al. 2008, A&A, 479, 9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Gelman, A., Carlin, J. B., Stern, H., & Rubin, D. B. 2004, Bayesian Data Analysis (Chapman & Hall/CRC) [Google Scholar]
  16. Giacconi, R., Rosati, P., Tozzi, P., et al. 2001, ApJ, 551, 624 [NASA ADS] [CrossRef] [Google Scholar]
  17. Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93 [NASA ADS] [CrossRef] [Google Scholar]
  18. Grazian, A., Fontana, A., de Santis, C., et al. 2006, A&A, 449, 951 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Hastie, T., Tibshirani, R., & Friedman, J. 2001, The Elements of Statistical Learning (Springer) [Google Scholar]
  21. Heymans, C., Brown, M. L., Barden, M., et al. 2005, MNRAS, 361, 160 [NASA ADS] [CrossRef] [Google Scholar]
  22. Heymans, C., Van Waerbeke, L., Bacon, D., et al. 2006, MNRAS, 368, 1323 [NASA ADS] [CrossRef] [Google Scholar]
  23. Hilbert, S., Hartlap, J., White, S. D. M., & Schneider, P. 2009, A&A, 499, 31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636 [NASA ADS] [CrossRef] [Google Scholar]
  25. Hoekstra, H., Mellier, Y., van Waerbeke, L., et al. 2006, ApJ, 647, 116 [NASA ADS] [CrossRef] [Google Scholar]
  26. Hyvärinen, A. & Oja, E. 1997, Neural Computation, 9(7), 1438 [CrossRef] [Google Scholar]
  27. Hyvärinen, A. & Oja, E. 2000, Neural Networks, 13(4-5), 411 [CrossRef] [PubMed] [Google Scholar]
  28. Hyvärinen, A., Karhunen, J., & Oja, E. 2001, Independent Component Analysis (Wiley Interscience) [Google Scholar]
  29. Jain, B., Seljak, U., & White, S. 2000, AJ, 530, 547 [NASA ADS] [CrossRef] [Google Scholar]
  30. Joachimi, B., Schneider, P., & Eifler, T. 2008, A&A, 477, 43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Jutten, C., & Hérault, J. 1991, Signal Processing, 24, 1 [CrossRef] [Google Scholar]
  32. Kaiser, N., & Pan-STARRS Collaboration 2005, in BAAS, 37, 465 [Google Scholar]
  33. Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 [NASA ADS] [CrossRef] [Google Scholar]
  34. Kendall, M. G., Stuart, A., & Ord, J. K. (eds.) 1987, Kendall's advanced theory of statistics (New York, NY, USA: Oxford University Press, Inc.) [Google Scholar]
  35. Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJS, 180, 330 [NASA ADS] [CrossRef] [Google Scholar]
  36. Kuijken, K. 2006, A&A, 456, 827 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Kullback, S., & Leibler, R. A. 1951, Annals of Mathematical Statistics, 22, 79 [CrossRef] [MathSciNet] [Google Scholar]
  38. Liang, J.-J., Fang, K.-T., Hickernell, F. J., & Li, R. 2001, Math. Comput., 70, 337 [NASA ADS] [CrossRef] [Google Scholar]
  39. Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20 [NASA ADS] [CrossRef] [Google Scholar]
  40. Massey, R., Refregier, A., Conselice, C. J., David, J., & Bacon, J. 2004, MNRAS, 348, 214 [NASA ADS] [CrossRef] [Google Scholar]
  41. Massey, R., Heymans, C., Bergé, J., et al. 2007a, MNRAS, 376, 13 [NASA ADS] [CrossRef] [Google Scholar]
  42. Massey, R., Rhodes, J., Leauthaud, A., et al. 2007b, ApJS, 172, 239 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  43. Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F., & van Waerbeke, L. 2007, MNRAS, 382, 315 [NASA ADS] [CrossRef] [Google Scholar]
  44. Peacock, J. A., & Dodds, S. J. 1996, MNRAS, 280, 19 [NASA ADS] [CrossRef] [Google Scholar]
  45. Phleps, S., Wolf, C., Peacock, J. A., Meisenheimer, K., & van Kampen, E. 2007, in Cosmic Frontiers, ed. N. Metcalfe, & T. Shanks, ASP Conf. Ser., 379, 327 [Google Scholar]
  46. Press, W., et al. 1992, Numerical Recipes in C (Cambridge University Press) [Google Scholar]
  47. R Development Core Team. 2007, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria [Google Scholar]
  48. Refregier, A., & Bacon, D. 2003, MNRAS, 338, 48 [NASA ADS] [CrossRef] [Google Scholar]
  49. Reiprich, T. H., & Böhringer, H. 2002, ApJ, 567, 716 [NASA ADS] [CrossRef] [Google Scholar]
  50. Rix, H.-W., Barden, M., Beckwith, S. V. W., et al. 2004, ApJS, 152, 163 [NASA ADS] [CrossRef] [Google Scholar]
  51. Schneider, P. 2006, in Saas-Fee Advanced Course 33: Gravitational Lensing: Strong, Weak and Micro, ed. G. Meylan, P. Jetzer, P. North, P. Schneider, C. S. Kochanek, & J. Wambsganss, 269 [Google Scholar]
  52. Schneider, P., van Waerbeke, L., Kilbinger, M., & Mellier, Y. 2002, A&A, 396, 1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  53. Schrabback, T., Erben, T., Simon, P., et al. 2007, A&A, 468, 823 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  54. Scoccimarro, R., Zaldarriaga, M., & Hui, L. 1999, ApJ, 527, 1 [NASA ADS] [CrossRef] [Google Scholar]
  55. Scott, D. W. 1992, Multivariate Density Estimation: Theory, Practice, and Visualization (New York: John Wiley & Sons) [Google Scholar]
  56. Semboloni, E., Mellier, Y., van Waerbeke, L., et al. 2006, A&A, 452, 51 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  57. Semboloni, E., van Waerbeke, L., Heymans, C., et al. 2007, MNRAS, 375, 6 [NASA ADS] [CrossRef] [Google Scholar]
  58. Semboloni, E., Tereno, I., van Waerbeke, L., & Heymans, C. 2009, MNRAS, 397, 608 [NASA ADS] [CrossRef] [Google Scholar]
  59. Silverman, B. W. 1986, Density Estimation (London: Chapman and Hall) [Google Scholar]
  60. Smail, I., Hogg, D. W., Yan, L., & Cohen, J. G. 1995, ApJ, 449, 105 [NASA ADS] [CrossRef] [Google Scholar]
  61. Smith, R. E., Peacock, J. A., Jenkins, A., et al. 2003, MNRAS, 341, 1311 [NASA ADS] [CrossRef] [Google Scholar]
  62. Springel, V. 2005, MNRAS, 364, 1105 [NASA ADS] [CrossRef] [Google Scholar]
  63. Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  64. Takada, M., & Jain, B. 2009, MNRAS, 395, 2065 [NASA ADS] [CrossRef] [Google Scholar]
  65. Venables, W., & Ripley, B. 2002, Modern Applied Statistics with S (Springer) [Google Scholar]
  66. Wolf, C., Meisenheimer, K., Kleinheinrich, M., et al. 2004, A&A, 421, 913 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.