Open Access

Table 4

Results obtained through modelling with the Convex Inversion Thermophysical Model.

Target name Pole λ (°) β (°) Period (h) D (km) pV Γ (Jm2s12K1$\[\mathrm{J} ~\mathrm{m}^{-2} \mathrm{~s}^{-\frac{1}{2}} \mathrm{~K}^{-1}\]$) θ¯$\[\bar{\theta}\]$ (°)
(215) Oenone 1 457+13$\[45_{-7}^{+13}\]$ 855+5$\[85_{-5}^{+5}\]$ 27.90773 ± 0.00005 372+2$\[37_{-2}^{+2}\]$ 0.2270.038+0.006$\[0.227_{-0.038}^{+0.006}\]$ 6362+86$\[63_{-62}^{+86}\]$ 68
2 2336+14$\[233_{-6}^{+14}\]$ 859+5$\[85_{-9}^{+5}\]$ 27.90774 ± 0.00006 372+2$\[37_{-2}^{+2}\]$ 0.220.03+0.01$\[0.22_{-0.03}^{+0.01}\]$ 6261+88$\[62_{-61}^{+88}\]$ 42
(279) Thule 1 584+24$\[58_{-4}^{+24}\]$ 27+9$\[2_{-7}^{+9}\]$ 23.8964 ± 0.0003 1166+9$\[116_{-6}^{+9}\]$ 0.0390.005+0.005$\[0.039_{-0.005}^{+0.005}\]$ 7675+44$\[76_{-75}^{+44}\]$ 68
2 2361+28$\[236_{-1}^{+28}\]$ 38+5$\[3_{-8}^{+5}\]$ 23.8963 ± 0.0004 1178+10$\[117_{-8}^{+10}\]$ 0.0380.005+0.007$\[0.038_{-0.005}^{+0.007}\]$ 6968+81$\[69_{-68}^{+81}\]$ 68
(357) Ninina 1 4116+2$\[\mathbf{41}_{-\mathbf{16}}^{+\mathbf{2}}\]$ 74+25$\[\mathbf{7}_{-\mathbf{4}}^{+\mathbf{25}}\]$ 35.9845 ± 0.0005 1048+9$\[\mathbf{104}_{-\mathbf{8}}^{+\mathbf{9}}\]$ 0.080.02+0.03$\[\mathbf{0.08}_{-\mathbf{0.02}}^{+\mathbf{0.03}}\]$ 4039+208$\[\mathbf{40}_{-\mathbf{39}}^{+\mathbf{208}}\]$ 59
2 22421+7$\[224_{-21}^{+7}\]$ 426+13$\[42_{-6}^{+13}\]$ 35.9845 ± 0.0004 1012+12$\[101_{-2}^{+12}\]$ 0.080.03+0.01$\[0.08_{-0.03}^{+0.01}\]$ 65+194$\[6_{-5}^{+194}\]$ 34
(366) Vincentina 1 511+2$\[51_{-1}^{+2}\]$ 191+9$\[19_{-1}^{+9}\]$ 17.3484 ± 0.0002 874+5$\[87_{-4}^{+5}\]$ 0.0810.009+0.037$\[0.081_{-0.009}^{+0.037}\]$ 4847+151$\[48_{-47}^{+151}\]$ 25
2 2341+2$\[234_{-1}^{+2}\]$ 02+5$\[-0_{-2}^{+5}\]$ 17.3484 ± 0.0003 875+5$\[87_{-5}^{+5}\]$ 0.0800.009+0.043$\[0.080_{-0.009}^{+0.043}\]$ 4140+109$\[41_{-40}^{+109}\]$ 24
(373) Melusina 1 201+24$\[20_{-1}^{+24}\]$ 682+1$\[-68_{-2}^{+1}\]$ 12.986274 ± 0.00003 994+13$\[99_{-4}^{+13}\]$ 0.0400.007+0.006$\[0.040_{-0.007}^{+0.006}\]$ 1312+87$\[13_{-12}^{+87}\]$ 19
2 1321+14$\[\mathbf{132}_{-\mathbf{1}}^{+\mathbf{14}}\]$ 544+4$\[\mathbf{54}_{-\mathbf{4}}^{+\mathbf{4}}\]$ 12.986283 ± 0.00002 10110+1$\[\mathbf{101}_{-\mathbf{10}}^{+\mathbf{1}}\]$ 0.0380.002+0.009$\[\mathbf{0.038}_{-\mathbf{0.002}}^{+\mathbf{0.009}}\]$ 54+95$\[\mathbf{5}_{-\mathbf{4}}^{+\mathbf{95}}\]$ 13
(395) Delia 1 52+24$\[5_{-2}^{+24}\]$ 4915+5$\[-49_{-15}^{+5}\]$ 19.68097 ± 0.00005 524+7$\[52_{-4}^{+7}\]$ 0.0390.007+0.007$\[0.039_{-0.007}^{+0.007}\]$ 2625+94$\[26_{-25}^{+94}\]$ 45
2 20723+14$\[207_{-23}^{+14}\]$ 5620+5$\[-56_{-20}^{+5}\]$ 19.68103 ± 0.00008 535+11$\[53_{-5}^{+11}\]$ 0.0380.01+0.008$\[0.038_{-0.01}^{+0.008}\]$ 3938+61$\[39_{-38}^{+61}\]$ 59
(429) Lotis 1 1336+3$\[133_{-6}^{+3}\]$ 1610+5$\[-16_{-10}^{+5}\]$ 13.58081 ± 0.00002 674+1$\[67_{-4}^{+1}\]$ 0.0360.001+0.06$\[0.036_{-0.001}^{+0.06}\]$ 183182+317$\[183_{-182}^{+317}\]$ 21
2 3124+4$\[312_{-4}^{+4}\]$ 56+5$\[5_{-6}^{+5}\]$ 13.58081 ± 0.00003 687+1$\[68_{-7}^{+1}\]$ 0.0360.001+0.059$\[0.036_{-0.001}^{+0.059}\]$ 128127+372$\[128_{-127}^{+372}\]$ 21
(527) Euryanthe 1 1476+7$\[147_{-6}^{+7}\]$ 594+11$\[-59_{-4}^{+11}\]$ 42.8379 ± 0.0004 532+1$\[53_{-2}^{+1}\]$ 0.0390.003+0.005$\[0.039_{-0.003}^{+0.005}\]$ 3130+68$\[31_{-30}^{+68}\]$ 3
2 2846+9$\[\mathbf{284}_{-\mathbf{6}}^{+\mathbf{9}}\]$ 586+9$\[\mathbf{-58}_{-\mathbf{6}}^{+\mathbf{9}}\]$ 42.8378 ± 0.0002 511+3$\[\mathbf{51}_{-\mathbf{1}}^{\mathbf{+3}}\]$ 0.0390.003+0.005$\[\mathbf{0.039}_{-\mathbf{0.003}}^{\mathbf{+0.005}}\]$ 3130+68$\[\mathbf{31}_{-\mathbf{30}}^{+\mathbf{68}}\]$ 28
(541) Deborah 1 15518+11$\[155_{-18}^{+11}\]$ 6320+9$\[63_{-20}^{+9}\]$ 29.4223 ± 0.0001 574+1$\[57_{-4}^{+1}\]$ 0.04880.009+0.0001$\[0.0488_{-0.009}^{+0.0001}\]$ 21+60$\[2_{-1}^{+60}\]$ 38
2 3102+19$\[\mathbf{310}_{-\mathbf{2}}^{+\mathbf{19}}\]$ 635+16$\[\mathbf{63}_{-\mathbf{5}}^{+\mathbf{16}}\]$ 29.422425 ± 0.0002 541+4$\[\mathbf{54}_{-\mathbf{1}}^{+\mathbf{4}}\]$ 0.0430.002+0.003$\[\mathbf{0.043}_{-\mathbf{0.002}}^{+\mathbf{0.003}}\]$ 21+28$\[\mathbf{2}_{-\mathbf{1}}^{+\mathbf{28}}\]$ 17
(672) Astarte 1 1846+6$\[184_{-6}^{+6}\]$ 6526+1$\[65_{-26}^{+1}\]$ 22.57993 ± 0.00004 302+1$\[30_{-2}^{+1}\]$ 0.0470.0040.01$\[0.047_{-0.004}^{0.01}\]$ 43+446$\[4_{-3}^{+446}\]$ 55
2 3078+9$\[307_{-8}^{+9}\]$ 6511+3$\[65_{-11}^{+3}\]$ 22.57990 ± 0.00005 311+3$\[31_{-1}^{+3}\]$ 0.0480.008+0.003$\[0.048_{-0.008}^{+0.003}\]$ 3736+263$\[37_{-36}^{+263}\]$ 59
(814) Tauris 1 1692+2$\[169_{-2}^{+2}\]$ 437+10$\[-43_{-7}^{+10}\]$ 36.0581 ± 0.0001 1015+4$\[101_{-5}^{+4}\]$ 0.0430.003+0.011$\[0.043_{-0.003}^{+0.011}\]$ 43+75$\[4_{-3}^{+75}\]$ 38
2 29811+26$\[298_{-11}^{+26}\]$ 841+6$\[-84_{-1}^{+6}\]$ 36.05858 ± 0.0002 11011+4$\[110_{-11}^{+4}\]$ 0.0400.004+0.015$\[0.040_{-0.004}^{+0.015}\]$ 21+148$\[2_{-1}^{+148}\]$ 10
(859) Bouzareah 1 2912+24$\[29_{-12}^{+24}\]$ 4517+20$\[-45_{-17}^{+20}\]$ 24.9287 ± 0.0003 684+9$\[68_{-4}^{+9}\]$ 0.0410.006+0.009$\[0.041_{-0.006}^{+0.009}\]$ 65+198$\[6_{-5}^{+198}\]$ 38
2 20021+24$\[200_{-21}^{+24}\]$ 3230+4$\[-32_{-30}^{+4}\]$ 24.9286 ± 0.0002 673+13$\[67_{-3}^{+13}\]$ 0.0410.006+0.017$\[0.041_{-0.006}^{+0.017}\]$ 65+198$\[6_{-5}^{+198}\]$ 32
(907) Rhoda 1 9411+1$\[94_{-11}^{+1}\]$ 304+14$\[30_{-4}^{+14}\]$ 22.4511 ± 0.0001 713+5$\[71_{-3}^{+5}\]$ 0.0450.016+0.009$\[0.045_{-0.016}^{+0.009}\]$ 87+242$\[8_{-7}^{+242}\]$ 16
2 2792+2$\[279_{-2}^{+2}\]$ 72+14$\[-7_{-2}^{+14}\]$ 22.45117 ± 0.00007 723+5$\[72_{-3}^{+5}\]$ 0.0380.008+0.012$\[0.038_{-0.008}^{+0.012}\]$ 43+146$\[4_{-3}^{+146}\]$ 13
(931) Whittemora 1 3214+6$\[32_{-14}^{+6}\]$ 469+12$\[46_{-9}^{+12}\]$ 19.17588 ± 0.00006 502+4$\[50_{-2}^{+4}\]$ 0.130.02+0.01$\[0.13_{-0.02}^{+0.01}\]$ 8685+114$\[86_{-85}^{+114}\]$ 45
2 22023+11$\[\mathbf{220}_{-\mathbf{23}}^{+\mathbf{11}}\]$ 708+5$\[\mathbf{70}_{-\mathbf{8}}^{+\mathbf{5}}\]$ 19.17589 ± 0.00006 512+2$\[\mathbf{51}_{-\mathbf{2}}^{\mathbf{+2}}\]$ 0.120.01+0.02$\[\mathbf{0.12}_{-\mathbf{0.01}}^{+\mathbf{0.02}}\]$ 4039+160$\[\mathbf{40}_{-\mathbf{39}}^{+\mathbf{160}}\]$ 21
(1062) Ljuba 1 1224+1$\[122_{-4}^{+1}\]$ 134+7$\[-13_{-4}^{+7}\]$ 33.7907 ± 0.0006 502+4$\[50_{-2}^{+4}\]$ 0.0770.023+0.005$\[0.077_{-0.023}^{+0.005}\]$ 2928+220$\[29_{-28}^{+220}\]$ 42
2 3053+3$\[\mathbf{305}_{-\mathbf{3}}^{+\mathbf{3}}\]$ 208+4$\[\mathbf{20}_{-\mathbf{8}}^{+\mathbf{4}}\]$ 33.7909 ± 0.0005 512+3$\[\mathbf{51}_{-\mathbf{2}}^{\mathbf{+3}}\]$ 0.0630.009+0.015$\[\mathbf{0.063}_{-\mathbf{0.009}}^{\mathbf{+0.015}}\]$ 2928+220$\[\mathbf{29}_{-\mathbf{28}}^{+\mathbf{220}}\]$ 55

Notes. The columns present parameters derived from the CITPM for the pole 1 and pole 2 solutions of each target: J2000 ecliptic pole longitude (λ) and latitude (β), sidereal rotation period, diameter (D), geometric albedo pv, thermal inertia (Γ), and Hapke’s mean surface slope (θ¯)$\[(\bar{\theta})\]$. The diameter corresponds to the diameter of a sphere with a volume equivalent to that of the model. Pole solutions preferred by occultations are marked with boldface.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.