Issue |
A&A
Volume 654, October 2021
|
|
---|---|---|
Article Number | A87 | |
Number of page(s) | 32 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202140991 | |
Published online | 15 October 2021 |
Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model★
1
Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University,
Słoneczna 36,
60-286
Poznań,
Poland
e-mail: am@amu.edu.pl
2
Astronomical Institute, Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2,
180 00
Prague 8,
Czech Republic
3
Max-Planck-Institut für Extraterrestrische Physik (MPE),
Giessenbachstrasse 1,
85748
Garching,
Germany
4
Mt. Suhora Observatory, Pedagogical University,
Podchorążych 2,
30-084
Cracow, Poland
5
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eőtvős Loránd Research Network (ELKH),
1121
Budapest,
Konkoly Thege Miklós út 15-17, Hungary
6
MTA CSFK Lendület Near-Field Cosmology Research Group, Hungary
7
ELTE Eötvös Loránd University, Institute of Physics,
1117,
Pázmány Péter sétány 1/A,
Budapest, Hungary
8
Astronomy Department, Eötvös Loránd University,
Pázmány P. s. 1/A,
1171
Budapest, Hungary
9
Observatório Nacional,
R. Gen. José Cristino, 77 - São Cristóvão,
20921-400,
Rio de Janeiro - RJ, Brazil
10
Geneva Observatory,
1290
Sauverny, Switzerland
11
Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University,
Marrakech, Morocco
12
Les Engarouines Observatory,
84570
Mallemort-du-Comtat,
France
13
Collonges Observatory,
74160
Collonges,
France
14
Flarestar Observatory Fl.5/B,
George Tayar Street,
San Gwann
SGN 3160, Malta
15
Stazione Astronomica,
28060
Sozzago (Novara),
Italy
16
Haute-Provence Observatory,
St-Michel l’Observatoire, France
17
Departamento de Sistema Solar, Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n,
18008
Granada, Spain
18
11 rue du Puits Coellier,
37550
Saint-Avertin, France
19
Observatoire du Bois de Bardon,
16110
Taponnat, France
20
Association T60, Observatoire Midi-Pyrénées, 14, avenue Edouard Belin,
31400
Toulouse, France
21
Aix Marseille Université, CNRS, CNES, Laboratoire d’Astrophysique de Marseille,
Marseille,
France
22
Instituto de Astrofísica de Canarias,
C/ Vía Lactea, s/n,
38205
La Laguna,
Tenerife, Spain
23
Gran Telescopio Canarias (GRANTECAN),
Cuesta de San José s/n,
38712
Breña Baja,
La Palma, Spain
24
Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Poland
25
School of Physical Sciences, The Open University,
MK7 6AA, UK
26
Space sciences, Technologies and Astrophysics Research Institute, Université de Liège,
Allée du 6 Août 17,
4000
Liège, Belgium
27
Institute of Physics, Jan Kochanowski University,
ul. Uniwersytecka 7,
25-406
Kielce, Poland
28
Chungbuk National University,
1, Chungdae-ro, Seowon-gu, Cheongju-si,
Chungcheongbuk-do, Republic of Korea
29
Korea Astronomy and Space Science Institute,
776 Daedeok-daero,
Yuseong-gu,
Daejeon
34055, Korea
30
Institute of Physics, Faculty of Natural Sciences, University of P. J. Šafárik,
Park Angelinum 9,
040 01
Košice, Slovakia
31
Laboratory of Space Researches, Uzhhorod National University,
Daleka st. 2a,
88000,
Uzhhorod, Ukraine
32
Dept. Astrofisica, Universidad de La Laguna,
38206
La Laguna,
Tenerife, Spain
33
Institute of Theoretical Physics and Astronomy, Vilnius University,
Saulėtekio al. 3,
10257
Vilnius, Lithuania
34
Organ Mesa Observatory,
4438 Organ Mesa Loop, Las Cruces,
New Mexico
88011, USA
35
Command Module Observatory,
121 W. Alameda Dr.,
Tempe,
AZ
85282, USA
36
Observatoire de Blauvac,
293 chemin de St Guillaume,
84570
St-Estève, France
37
Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain
38
Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB),
Barcelona, Spain
39
Lowell Observatory,
1400 West Mars Hill Road,
Flagstaff,
Arizona,
86001 USA
40
Department of Physics, Adiyaman University,
02040
Adiyaman, Turkey
41
European Southern Observatory,
Karl-Schwarzschild-Strasse 2,
85748
Garching bei München, Germany
42
Japan Spaceguard Association,
Bisei Spaceguard Center, 1716-3, Okura, Bisei, Ibara,
Okayama
714-1411, Japan
43
Kepler Institute of Astronomy, University of Zielona Góra,
Lubuska 2,
65-265
Zielona Góra,
Poland
Received:
2
April
2021
Accepted:
20
June
2021
Context. Recent results for asteroid rotation periods from the TESS mission showed how strongly previous studies have underestimated the number of slow rotators, revealing the importance of studying those targets. For most slowly rotating asteroids (those with P > 12 h), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. Also, it is still unclear whether signatures of different surface material properties can be seen in thermal inertia determined from mid-infrared thermal flux fitting.
Aims. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. Our goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics.
Methods. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS spacecrafts. In addition to data in the visible range, we also use thermal data from infrared space observatories (mainly IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model. This novel method has so far been applied to only a few targets, and therefore in this work we further validate the method itself.
Results. We present the models of 16 slow rotators, including two updated models. All provide good fits to both thermal and visible data.The obtained sizes are on average accurate at the 5% precision level, with diameters found to be in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 h, and the thermal inertia covers a wide range of values, from 2 to <400 J m−2 s−1∕2 K−1, not showing any correlation with the period.
Conclusions. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which mightbe due to their small skin depth.
Key words: minor planets, asteroids: general / techniques: photometric / radiation mechanisms: thermal
The photometric data with asteroid lightcurves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A87
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.