Issue |
A&A
Volume 696, April 2025
|
|
---|---|---|
Article Number | C6 | |
Number of page(s) | 1 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202554660e | |
Published online | 01 May 2025 |
Photometric segregation of dwarf and giant FGK stars using the SVO Filter Profile Service and photometric tools (Corrigendum)
1
Centro de Astrobiología (CAB), CSIC-INTA,
Camino Bajo del Castillo s/n,
28692
Villanueva de la Cañada, Madrid,
Spain
2
Departamento de Matemáticas, Universidad Militar Nueva Granada,
kilómetro 2 vía Cajicá –
Zipaquirá,
110111,
Colombia
3
PhD Programme in Astrophysics, Doctoral School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco,
28049
Madrid,
Spain
4
Observatorio Astronómico Nacional (OAN),
Alfonso XII 3,
28014
Madrid,
Spain
5
European Southern Observatory,
Karl-Schwarzschild-Strasse 2,
85748
Garching bei München,
Germany
6
Departamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, e IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Universidad Complutense de Madrid,
28040
Madrid,
Spain
7
Donostia International Physics Center (DIPC),
Manuel Lardizabal Ibilbidea, 4,
San Sebastián,
Spain
8
Centro de Estudios de Física del Cosmos de Aragón (CEFCA),
Plaza San Juan, 1,
44001
Teruel,
Spain
9
Observatório Nacional, Rua General José Cristino,
77, São Cristóvão,
20921-400,
Rio de Janeiro,
RJ,
Brazil
10
Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo,
São Paulo,
Brazil
11
Instruments4,
4121 Pembury Place,
La Canada Flintridge,
CA 91011,
USA
★★ Corresponding authors: pcruz@cab.inta-csic.es; esm@cab.inta-csic.es
Key words: techniques: photometric / astronomical databases: miscellaneous / virtual observatory tools / stars: fundamental parameters / stars: late-type / errata, addenda
This corrigendum addresses a typographical error in the definition of the Rand index (RI) presented in Sect. 4, Eq. (1), of the original paper. We emphasize that this error is solely typographical and that it had no impact on the results, as the calculations were performed using the appropriate R1 package, which implements the correct formulation.
The RI is a metric that quantifies the level of agreement between predicted and true data, and it is used to assess the accuracy of classification algorithms. It compares the number of agreements and the total number of pairs, as follows:
(1)
where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number of false negatives.
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.