Open Access

Table 4.

Model-fit results without and with systematic uncertainties using the leptonic and hadronic modelling for observation days t − t0 ∼ 1 d, 2 d, and 4 d.

Parameter Best-fit value on observation day

Day 1 Day 2 Day 4
Leptonic BPL model without systematics

Slope 1, Γe, 1 0 . 0 0.6 + 0.8 $ 0.0^{+0.8}_{-0.6} $ 1 . 3 0.5 + 1.5 $ -1.3^{+1.5}_{-0.5} $ 1 . 4 0.7 + 0.6 $ -1.4^{+0.6}_{-0.7} $
Slope 2, Γe, 2 3 . 79 0.18 + 0.17 $ -3.79^{+0.17}_{-0.18} $ 3 . 57 0.15 + 0.11 $ -3.57^{+0.11}_{-0.15} $ 3 . 52 0.06 + 0.05 $ -3.52^{+0.05}_{-0.06} $
Eb, e [GeV] 14 3 + 3 $ 14^{+3}_{-3} $ 17 4 + 8 $ 17^{+8}_{-4} $ 22 6 + 9 $ 22^{+9}_{-6} $
χ2/Nd.o.f 12.9/15 24.9/21 24.9/15
χred2 0.86 1.19 1.66
AICc 23.7 34.9 35.8

Hadronic ECPL model without systematics

Slope, Γp 2 . 25 0.13 + 0.13 $ -2.25^{+0.13}_{-0.13} $ 2 . 49 0.07 + 0.07 $ -2.49^{+0.07}_{-0.07} $ 2 . 48 0.08 + 0.08 $ -2.48^{+0.08}_{-0.08} $
Ec, p [TeV] 0 . 26 0.08 + 0.08 $ 0.26^{+0.08}_{-0.08} $ 1 . 0 0.3 + 0.3 $ 1.0^{+0.3}_{-0.3} $ 1 . 6 0.6 + 0.6 $ 1.6^{+0.6}_{-0.6} $
χ2/Nd.o.f 21.5/16 24.9/22 26.5/16
χred2 1.34 1.13 1.66
AICc 29.1 32.0 34.1

Leptonic BPL model with systematics

Slope 1, Γe, 1 0 . 4 1.9 + 1.9 $ ~~\,0.4^{+1.9}_{-1.9} $ 1 . 6 0.3 + 0.8 $ -1.6^{+0.8}_{-0.3} $ 1 . 4 0.7 + 0.8 $ -1.4^{+0.8}_{-0.7} $
Slope 2, Γe, 2 3 . 70 0.17 + 0.17 $ -3.70^{+0.17}_{-0.17} $ 3 . 6 0.2 + 0.2 $ -3.6^{+0.2}_{-0.2} $ 3 . 75 0.11 + 0.13 $ -3.75^{+0.13}_{-0.11} $
Eb, e [GeV] 13 3 + 3 $ 13^{+3}_{-3} $ 20 8 + 9 $ 20^{+9}_{-8} $ 30 10 + 11 $ 30^{+11}_{-10} $
χ2/Nd.o.f 12.9/12 22.8/18 16.8/12
χred2 1.08 1.27 1.40
AICc 37.1 43.4 41.0

Hadronic ECPL model with systematics

Slope, Γp 2 . 22 0.10 + 0.06 $ -2.22^{+0.06}_{-0.10} $ 2 . 51 0.05 + 0.05 $ -2.51^{+0.05}_{-0.05} $ 2 . 40 0.15 + 0.15 $ -2.40^{+0.15}_{-0.15} $
Ec, p [TeV] 0 . 23 0.04 + 0.06 $ 0.23^{+0.06}_{-0.04} $ 0 . 9 0.2 + 0.2 $ 0.9^{+0.2}_{-0.2} $ 1 . 0 0.6 + 0.6 $ 1.0^{+0.6}_{-0.6} $
χ2/Nd.o.f 21.1/13 20.4/19 19.9/13
χred2 1.62 1.07 1.53
AICc 40.1 37.1 38.9

Notes. For the leptonic modelling, Γe, 1 and Γe, 2 are the best-fit slopes below and above the best-fit energy break (Eb, e), respectively, of the electron energy distribution. For the hadronic case, Γp is the best-fit slope and Ec, p is the best-fit cutoff energy of the proton energy distribution. We provide the χred2 fit statistics (χred2 = χ2/Nd.o.f) and the daily AICc values (see text). The sum of the AICc values for all days for the leptonic model without and with systematics is 94.4 and 121.5, respectively, while for the hadronic model without and with systematics, it is 95.2 and 116.1, respectively. The error values correspond to the quadratic sum of 1σ fit and sampling errors (Appendix C). The units of Ec, p and Eb, e are in TeV and GeV, respectively.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.