Open Access

Table 5

Effects of reduced label quantity and mixed datasets on mean absolute errors for various labels.

(a) Model descriptions

Model type Learning paradigm Architecture Dataset Available labels (real data)
Legend descriptor
CNN 1.00 (real) Encoder Supervised CNN Real 100%
CNN 0.01 (real) Encoder Supervised CNN Real 1%
CNN 1.00 (mix) Encoder Supervised CNN Mixed 100%
CNN 0.01 (mix) Encoder Supervised CNN Mixed 1%
AE 1.00 (real) AE Semi-supervised CNN-ResNet Real 100%
AE 0.01 (real) AE Semi-supervised CNN-ResNet Real 1%
AE 1.00 (mix) AE Semi-supervised CNN-ResNet Mixed 100%
AE 0.01 (mix) AE Semi-supervised CNN-ResNet Mixed 1%

(b) Intrinsic labels

Teff (K) [M/H] (dex) log(g) (dex) All (−)

CNN 1.00 (real) 51.27 ± 0.81 0.02109 ± 0.00064 0.04102 ± 0.00085 0.1837 ± 0.0022
CNN 0.01 (real) 154.4 ± 5.8 0.049 ± 0.0012 0.0712 ± 0.0014 0.3954 ± 0.0061
CNN 1.00 (mix) 50.21 ± 0.82 0.02118 ± 0.00064 0.03957 ± 0.00085 0.1793 ± 0.0022
CNN 0.01 (mix) 108.6 ± 5.6 0.04468 ± 0.00081 0.05083 ± 0.00098 0.2984 ± 0.0051
AE 1.00 (real) 50.32 ± 0.83 0.02478 ± 0.00056 0.03898 ± 0.00089 0.1844 ± 0.0022
AE 0.01 (real) 100.2 ± 1.7 0.082 ± 0.0012 0.0848 ± 0.0013 0.4439 ± 0.0038
AE 1.00 (mix) 49.74 ± 0.77 0.02292 ± 0.00055 0.04139 ± 0.00087 0.1867 ± 0.0021
AE 0.01 (mix) 75.2 ± 2.8 0.02934 ± 0.00081 0.0567 ± 0.0011 0.2578 ± 0.0037

(c) Extrinsic labels

Radvel (km s−1) BERV (km s−1) Airmass (−) All (−)

CNN 1.00 (real) 1.994 ± 0.058 0.1764 ± 0.0018 0.01163 ± 0.00022 0.07591 ± 0.00098
CNN 0.01 (real) 4.4 ± 0.19 0.7122 ± 0.0071 0.06974 ± 0.00066 0.2839 ± 0.0031
CNN 1.00 (mix) 2.375 ± 0.061 0.1671 ± 0.002 0.01069 ± 0.00022 0.0815 ± 0.001
CNN 0.01 (mix) 3.91 ± 0.14 0.787 ± 0.011 0.04042 ± 0.00063 0.2047 ± 0.0026
AE 1.00 (real) 1.94 ± 0.069 0.1214 ± 0.0021 0.00885 ± 0.00018 0.0664 ± 0.0011
AE 0.01 (real) 5.19 ± 0.19 0.4659 ± 0.0063 0.07247 ± 0.00073 0.3002 ± 0.0032
AE 1.00 (mix) 1.918 ± 0.063 0.1697 ± 0.0024 0.0103 ± 0.00022 0.0709 ± 0.0011
AE 0.01 (mix) 3.53 ± 0.15 0.3719 ± 0.0062 0.05555 ± 0.00058 0.221 ± 0.0026

Notes. The first table provides an overview of the model properties. The column titled “All” uses NMAE to summarize the mean absolute error across all normalized labels. The column named “Available labels (real data)” indicates the percentage of HARPS labels in the catalog that were used during the training phase. The notation “a ± b” represents the mean absolute error ± the standard deviation for each respective label and model.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.