Open Access

Table 4

Overview of learning paradigms and architectures and their corresponding MAE for various labels.

(a) Model descriptions

Model type Learning paradigm Architecture Bottleneck Dataset
Legend descriptor
β-VAE (U*) (1) β-VAE Unsupervised CNN–CNN 128 Real
CNN (mix) Encoder Supervised CNN 6 Mixed
AE (real) AE Semi-supervised CNN-ResNet 9 Real
AE (mix) AE Semi-supervised CNN-ResNet 9 Mixed
infoVAE (mix) infoVAE Semi-supervised CNN-ResNet 32 Mixed
CNN (ETC) Encoder Supervised CNN 7 ETC

(b) Intrinsic labels

Teff (K) [M/H] (dex) log(g) (dex) All (−)

β-VAE (U*) (1) 978.0 ± 13.0 0.1578 ± 0.0027 0.1798 ± 0.0025 1.548 ± 0.013
CNN (mix) 50.21 ± 0.82 0.02118 ± 0.00064 0.03957 ± 0.00085 0.1793 ± 0.0022
AE (real) 50.32 ± 0.83 0.02478 ± 0.00056 0.03898 ± 0.00089 0.1844 ± 0.0022
AE (mix) 49.74 ± 0.77 0.02292 ± 0.00055 0.04139 ± 0.00087 0.1867 ± 0.0021
infoVAE (mix) 43.68 ± 0.73 0.03424 ± 0.00058 0.04005 ± 0.00087 0.1986 ± 0.0021
CNN (ETC) 273.1 ± 4.2 0.1222 ± 0.0011 0.4994 ± 0.0044 1.7029 ± 0.0091

(c) Extrinsic labels

Radvel (km s−1) BERV (km s−1) Airmass (−) All (−)

β-VAE (U*) (1) 31.07 ± 0.27 16.01 ± 0.096 0.181 ± 0.0019 1.5751 ± 0.0074
CNN (mix) 2.375 ± 0.061 0.1671 ± 0.002 0.01069 ± 0.00022 0.0815 ± 0.001
AE (real) 1.94 ± 0.069 0.1214 ± 0.0021 0.00885 ± 0.00018 0.0664 ± 0.0011
AE (mix) 1.918 ± 0.063 0.1697 ± 0.0024 0.0103 ± 0.00022 0.0709 ± 0.0011
infoVAE (mix) 1.967 ± 0.071 0.1855 ± 0.0024 0.01023 ± 0.00021 0.0722 ± 0.0011
CNN (ETC) 25.43 ± 0.27 NaN ± NaN 1.6827 ± 0.0054 6.932 ± 0.016

Notes. The column titled “All” uses NMAE from Eq. (13) to summarize all labels in the group. The notation “a ± b” represents the mean absolute error ± the standard deviation of the estimate for each respective label and model. Using boldface signifies that the model outperformed the other models significantly for the label in that column. This significance was determined with a significance level of α = 0.01 using Mann-Whitney U tests with Holm–Bonferroni correction for multiple comparisons (Mann & Whitney 1947; Holm 1979). (1) Sedaghat et al. (2021).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.