Open Access

Table A.1

Priors used for the joint transit and RV modelling and corresponding posteriors from the best-fit model.

Parameters Prior Best-fit
Transit model parameters
ρ (ρ) 𝒩 (1.344, 0.076) 1.3340.079+0.075$1.334_{ - 0.079}^{ + 0.075}$
u1,TESS 𝒩 (0.47621, 0.00145) 0.47610.0012+0.0015$0.4761_{ - 0.0012}^{ + 0.0015}$
u2,TESS 𝒩 (0.12172, 0.00220) 0.12190.0027+0.0024$0.1219_{ - 0.0027}^{ + 0.0024}$
u1,CHEOPS 𝒩 (0.61973, 0.00133) 0.61980.0012+0.0013$0.6198_{ - 0.0012}^{ + 0.0013}$
u2,CHEOPS 𝒩 (0.0696, 0.00182) 0.06960.0019+0.0018$0.0696_{ - 0.0019}^{ + 0.0018}$

RV model parameters
υ0 (km s−1) 𝒰(−4.0, 0.0) 3.82920.0042+0.0033$ - 3.8292_{ - 0.0042}^{ + 0.0033}$

Model parameters of HD 15337 b
Rb/R 𝒰(0.01, 0.03) 0.018980.00026+0.00030$0.01898_{ - 0.00026}^{ + 0.00030}$
Pb (days) 𝒰(4.7555, 4.7565) 4.75598040.0000037+0.000062$4.7559804_{ - 0.0000037}^{ + 0.000062}$
T0,b (BJD-2457000) 𝒰(1411.457,1411.467)a 1411.46230.0013+0.0008$1411.4623_{ - 0.0013}^{ + 0.0008}$
eb y3(0.867, 3.03) 0.0580.016+0.022$0.058_{ - 0.016}^{ + 0.022}$
bb 𝒰(0.0, 2.0) 0.170.11+0.13$0.17_{ - 0.11}^{ + 0.13}$
Kb (km s−1) 𝒰(0.0, 0.01) 0.00282 ± 0.00015

Model parameters of HD 15337 c
Rc/R 𝒰(0.01, 0.04) 0.027070.00077+0.00091$0.02707_{ - 0.00077}^{ + 0.00091}$
Pc (days) 𝒰(17.180, 17.181) 17.1805460.000026+0.000021$17.180546_{ - 0.000026}^{ + 0.00021}$
T0,b (BJD-2457000) 𝒰(1414.545,1414.555)a 2458414.551620.0014+0.0015$2458414.55162_{ - 0.0014}^{ + 0.0015}$
ec β(0.867, 3.03) 0.0960.045+0.059$0.096_{ - 0.045}^{ + 0.059}$
bc 𝒰(0.0, 2.0) 0.890.07+0.08$0.89_{ - 0.07}^{ + 0.08}$
Kc (km s−1) 𝒰(0.0, 0.01) 0.001920.00032+0.00036$0.00192_{ - 0.00032}^{ + 0.00036}$

Additional RV model parameters
ΔRVHARPS_1 (km s−1) 𝒩(0.022, 0.01) 0.01870.0019+0.0020$0.0187_{ - 0.0019}^{ + 0.0020}$
Jitter σHARPS_0 𝒰(0.0, 0.0035) 0.0009±0.0003
Jitter σHARPS_1 𝒰(0.0, 0.0035) 0.00200.0004+0.0005$0.0020_{ - 0.0004}^{ + 0.0005}$
Jitter σHARPS_2 𝒰(0.0, 0.0035) 0.00090.0003+0.0004$0.0009_{ - 0.0003}^{ + 0.0004}$
ΔRVPFS (km s−1) 𝒩 (3.815, 0.01) 3.8137 ± 0.0021
Jitter σPFS 𝒰(0.0, 0.0035) 0.0011±0.0002
Psin (days) 𝒰(5500, 170000) 195572612+3425$19557_{ - 2612}^{ + 3425}$
Ksin (km s−1) 𝒰(0, 0.025) 0.01770.0038+0.0044$0.0177_{ - 0.0038}^{ + 0.0044}$
logRHK,0$\log R_{{\rm{HK}},0}^\prime $ 𝒩 (−4.95, 0.2) −4.999 ± 0.023
logRHK, drift1 (d1)$\log R_{{\rm{HK}},{\rm{ drift1 }}}^\prime \left( {{{\rm{d}}^{ - 1}}} \right)$ 𝒩(0.0, 0.2) 8.7902.074+1.810×105$8.790_{ - 2.074}^{ + 1.810} \times {10^{ - 5}}$
logRHK.drift (d2)$\log R_{{\rm{HK}}{\rm{.drift }}}^\prime \left( {{{\rm{d}}^{ - 2}}} \right)$ 𝒩(0.0, 0.2) 1.9100.366+0.405×108$ - 1.910_{ - 0.366}^{ + 0.405} \times {10^{ - 8}}$

Additional transit model parameters
ΔFCHEOPS (visit 1) 𝒩(0.0, 0.001) 2.1880.185+0.170×104$2.188_{ - 0.185}^{ + 0.170} \times {10^{ - 4}}$
ΔFCHEOPS (visit 2) 𝒩(0.0, 0.001) 1.2630.102+0.136×104$1.263_{ - 0.102}^{ + 0.136} \times {10^{ - 4}}$
ΔFCHEOPS (visit 3) 𝒩(0.0, 0.001) 1.3750.114+0.131×104$1.375_{ - 0.14}^{ + 0.131} \times {10^{ - 4}}$
ΔFCHEOPS (visit 4) 𝒩(0.0, 0.001) 7.3431.138+1.306×105$7.343_{ - 1.138}^{ + 1.306} \times {10^{ - 5}}$
ΔFCHEOPS (visit 5) 𝒩(0.0, 0.001) 1.704 ± 0.129 × 10−4
ΔFCHEOPS (visit 6) 𝒩(0.0, 0.001) 1.1290.130+0.135×104$1.129_{ - 0.130}^{ + 0.135} \times {10^{ - 4}}$
Jitter σCHEOPS (all visits) 𝒰(0.0, 0.0015) 2.0850.056+0.052×104$2.085_{ - 0.056}^{ + 0.052} \times {10^{ - 4}}$
ΔFTESS (sector 3) 𝒩(0.0, 0.001) 3.0351.637+1.478×105$3.035_{ - 1.637}^{ + 1.478} \times {10^{ - 5}}$
ΔFTESS (sector 4) 𝒩(0.0, 0.001) 0.5141.081+1.256×105$ - 0.514_{ - 1.081}^{ + 1.256} \times {10^{ - 5}}$
ΔFTESS (sector 30) 𝒩(0.0, 0.001) 3.1061.225+1.191×105$ - 3.106_{ - 1.225}^{ + 1.191} \times {10^{ - 5}}$
Jitter σTESS (all sectors) 𝒰(0.0, 0.002) 1.6220.153+0.161×104$1.622_{ - 0.153}^{ + 0.161} \times {10^{ - 4}}$

GP hyperparameters
ARV 𝒰(0.0, 0.01) 0.00260.0003+0.0004$0.0026_{ - 0.0003}^{ + 0.0004}$
τdecay 𝒰(10, 200) 40.4410.64+19.19$40.44_{ - 10.64}^{ + 19.19}$
γ 𝒰(0.05,5.0) 2.661.63+1.45$2.66_{ - 1.63}^{ + 1.45}$
ln Prot 𝒰(ln 10, ln 200) 3.8290.980+1.018$3.829_{ - 0.980}^{ + 1.018}$
AlogRHK${A_{\log {\rm{R}}_{{\rm{HK}}}^\prime }}$ 𝒰(0.0, 0.1) 0.03170.0036+0.0043$0.0317_{ - 0.0036}^{ + 0.0043}$

Notes. 𝒰niform priors are defined as 𝒰(min, max), normal priors are defined as 𝒩(µ, σ), where µ is the median value and σ is the standard deviation, and beta priors are defined as β(a, b), where a and b are the β distribution coefficients.

(a) Prior is put on the orbital phase ϕ as detailed in Section 4.3.1

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.