Issue |
A&A
Volume 684, April 2024
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 13 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202347908 | |
Published online | 26 April 2024 |
A catalogue of low-mass X-ray binaries in the Galaxy: From the INTEGRAL to the Gaia era★
1
IRAP, Université de Toulouse, CNRS, CNES, UPS,
31401
Toulouse,
France
e-mail: francis.fortin@irap.omp.eu
2
Université Paris Cité, CNRS,
Astroparticule et Cosmologie,
75013
Paris,
France
3
Delhi Technological University,
Delhi
110042,
India
4
Department of Physics and Astronomy “Galileo Galilei”, University of Padua,
Padua,
Italy
5
Instituto Argentino de Radioastronomía, CCT La Plata, CONICET; CICPBA; UNLP,
C.C.5, 1894 Villa Elisa,
Buenos Aires,
Argentina
Received:
8
September
2023
Accepted:
22
January
2024
Context. Low-mass X-ray binaries (LMXBs) are high-energy sources that require multi-wavelength follow-up campaigns to be fully characterised. New transients associated with LMXBs are regularly discovered, and previously known systems are often revisited by astronomers to constrain their intrinsic parameters. All of this information compiled into a catalogue may build a useful tool for subsequent studies on LMXBs and their population.
Aims. We aim to provide an update on past LMXB catalogues dating back 16 yr and propose to the community a database on Galactic LMXBs with the most complete, manually curated set of parameters and their original references. On top of a fixed version accessible through Vizier, we propose hosting the catalogue independently on our GitHub collaboration, side-by-side with our previous catalogue on high-mass X-ray binaries. The database will be regularly updated based on new publications and community inputs.
Methods. We built a working base by cross-matching previous LMXB catalogues and supplementing them with lists of hard X-ray sources detected over the past 20 yr. We compiled information from Simbad on LMXBs as a starting point for a thorough, manual search in the literature to retrieve important parameters that characterize LMXBs. We retrieved newly detected LMXBs and candidates directly from literature searches. Counterparts to these LMXBs are compiled from hard X-ray to infrared and radio domains. Every piece of information presented on the LMXBs is curated and backed by accurate references.
Results. We present a catalogue of 339 Galactic LMXBs listing their coordinates, companion star spectral type, systemic radial velocity, component masses and compact object nature, the presence of type I X-ray bursts, as well as orbital data. Coordinates and identifiers of counterparts at various wavelengths are given, including 140 LMXBs detected in Gaia DR3.
Key words: catalogs / binaries: general / stars: low-mass
The catalogue (Tables A.1 and A.2) is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A124 as well as at https://binary-revolution.github.io/LMXBwebcat. The database in the associated GitHub repository will be continuously updated based on community input.
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
1 Introduction
More than 60 yr have passed since the identification of the first extrasolar X-ray source (Giacconi et al. 1962). This particular source, Scorpius X-1, belongs to the category of low-mass X-ray binaries (LMXB), which are composed of a compact object – either a black hole (BH) or a neutron star (NS) – that accretes material from a low-mass companion star (M ≲ 1 M⊙. LMXBs are soft X-ray emitters powered by mass transfer happening through Roche-lobe overflow (see a general review on accreting binaries in Chaty 2022). An accretion disc can form around the compact object and can be responsible for the majority of the radiation emitted during periods of high activity from X-rays down to infrared wavelengths. The formation of relativistic jets commonly occurs during specific phases of activity in micro-quasars (i.e. BH LMXBs). However, these X-ray systems are but a single phase in the whole evolution of binary stars, from their formation up to their endpoint as compact binaries and gravitational wave sources (see a recent review by Tauris & van den Heuvel 2023).
As a follow-up to our previous work on building an updated catalogue of Galactic high-mass X-ray binaries (HMXBs, Fortin et al. 2023b, now containing more than 160 sources in HMXB-webcat1), we present our latest catalogue of 339 LMXBs in the Milky Way here. Information available on LMXBs in the literature suffers from the same caveat as HMXBs: as these sources are inherently difficult to observe and require multi-wavelength and time series campaigns to be properly constrained, most of the discoveries on LMXBs end up spread over several years and can come from many different teams of researchers across the world. This is why the catalogue presented in this paper is centred on two important concepts. Firstly, for each parameter listed, we provide the original reference where it was derived; this results in a compilation of more than 600 unique, curated references. Secondly, in parallel to being hosted in Vizier in a fixed version, we host it independently on a dedicated website, LMXBwebcat, on which the database is able to receive updates through our GitHub collaboration2 as new observations are made, and new or updated parameters of already known sources become available. Hence, this catalogue is open-source, and we invite the community to participate in adding their discoveries and updates on LMXBs, or correct any omission they may identify in our catalogue.
Since the late 90s, X-ray observatories such as INTEGRAL3, XMM-Newton4, Chandra, Swift, and MAXI5 have participated in the discovery of new LMXBs and gaining in-depth knowledge on their intrinsic parameters such as orbital data, companion mass, or the exact nature of the accreting compact object. All of this information would benefit from being compiled together to facilitate further studies on LMXBs. However, the need for such a catalogue is not only motivated by the observational progresses of the past 16 yr, it is also the upcoming facilities dedicated to the high energy and transient sky, such as eROSITA, LSST6, and SVOM7, that warrant keeping a constantly up-to-date catalogue in anticipation of the amount of new data that will be available on X-ray binaries. In turn, this will also allow us to better predict the population of gravitational-wave sources that LISA8 will be able to detect (see the white paper Amaro-Seoane et al. 2023).
The first instances of LMXB catalogues date back to the 1980s (Bradt & McClintock 1983; van Paradijs 1983) and counted roughly 33 X-ray systems. Subsequent catalogues were made following the advancements of space-based X-ray observatories, namely the ones presented in van Paradijs (1995), Liu et al. (2001), and, finally, the latest and most used catalogue to date of 187 Galactic LMXBs by Liu et al. (2007).
In this paper, we first describe the method we followed to build the catalogue (Sect. 2, which follows a similar structure to what we presented in our HMXB catalogue Fortin et al. 2023b), namely for the recovery of parameters and numerous counterparts to each LMXB. In Sect. 3, we discuss the catalogue itself and how it compares to previous iterations and other similar catalogues. We also discuss the potential uses of our catalogue and conclude on this work in Sect. 4.
2 Building the catalogue
In this section, we provide a step-by-step description of the tasks we performed to build the catalogue. We adopted a very similar approach to that presented in the twin catalogue dedicated to HMXBs (Fortin et al. 2023b), such as using pre-existing catalogues of high-energy sources as a starting base. We relied on the services of the Centre de Données Astronomiques de Strasbourg (CDS) such as Simbad and Vizier, and of course minute manual research through references using NASA’s Astrophysics Data System (ADS) abstract search engine.
2.1 Reference catalogues and building a working base
More than 16 yr after publication, the LMXB catalogue by Liu et al. (2007) is still the most used reference; at that time, the authors listed 187 LMXBs and candidates in the Milky Way. We supplemented this list with the catalogue of INTEGRAL detections (Bird et al. 2016), which contains 939 hard X-ray sources of various nature. We only kept the sources labelled LMXB or unidentified, thus adding 345 sources. We identified sources common to both Liu et al. (2007) and Bird et al. (2016) using positional and identifier cross-matching performed with TOPCAT (Taylor 2005). We then queried Simbad for all the sources containing the type (or subtype) LXB; this returns a list of 674 sources, most of which are extragalactic. These are usually grouped in small clusters around their host galaxy; hence, we used the same spatial filtering method as that presented in Fortin et al. (2023b), where we check each source for the presence of close neighbours. However, contrary to HMXBs, LMXBs are known to be present in globular clusters, and these structures may hold up to ~10 LMXBs very close together (as is the case in NGC 6440, for instance). Hence, we used the list of globular clusters available in Vasiliev & Baumgardt (2021) to check the likelihood of a group of LMXBs being part of a Galactic globular cluster, before filtering them out if they have neighbours closer than 10′. This way, we retrieved 251 Galactic LMXB candidates from Simbad.
Eventually, after cross-matching the Simbad LXBs with the sample of high energy sources from Liu et al. (2007) and Bird et al. (2016), we obtain a working base of 573 sources. We note that a significant amount (216) were listed in the INTEGRAL catalogue as unidentified, and most of them will be discarded through a thorough manual process of checking new information published on these sources in the literature.
2.2 Retrieving binary parameters and new LMXBs
While pieces of information are available on the LMXBs and candidates compiled so far (mainly from the data catalogued in Liu et al. 2007; Ritter & Kolb 2011, and Simbad), our goal for this catalogue is to perform a thorough investigation on each of these sources to, firstly, identify which are interesting LMXB candidates, and, secondly, retrieve useful parameters as well as the original studies that derived them (this includes double checking references already compiled by former catalogues). We find that the later point is especially important, as some parameters listed might have been derived using different methods for each source; this information should be readily available for authors of further studies that revisit these sources. Thus, during the individual search for information on each of these sources, we only used already available data as a starting point for the manual search, and we systematically re-verified already available references. We compile new and updated data whenever they are available, confirm the already measured parameters by retrieving the original studies, and we search for older publications to ensure we have compiled every piece of information possible for each binary. Hence, none of the parameters or references we list in the catalogue come from an automated, unsupervised query on Simbad. We did use the resources in works that already compiled some useful data on LMXBs, such as spectral types, orbital periods and masses in Yungelson & Lasota (2008); a list of type I X-ray bursts seen be RXTE in Galloway et al. (2008) and its extension to BeppoSAX and INTEGRAL MINBAR (Galloway et al. 2020); orbital periods in Asai et al. (2022); the catalogue of stellar-mass black holes in X-ray binaries BlackCAT (Corral-Santana et al. 2016); or the latest catalogue of Ultra-Compact X-ray Binaries UltraCompCAT (Armas Padilla et al. 2023, which is also a dynamic database9).
Because LMXBs can be highly variable sources, we settled on a list of parameters to look for that we believe are representative of the systems at all times. These are the spectral type of the companion star, the nature of the accreting compact object, masses of the binary components, the orbital parameters, the radial velocity of the centre of mass, the presence of a spin period and its time derivative, and the detection of type-I X-ray bursts. We tried not to log any ‘assumed’ values for any parameters – such as when NSs are assumed to be 1.4 M⊙ in orbital solutions or when the LMXBs are being located at 8 kpc by default if they are near the Galactic centre – unless they are motivated or indirectly constrained by other measurements.
Lastly, we performed “blind” searches within the literature for newly detected LMXBs and candidates in papers ranging from 2016 to 2023 that may not appear in either of the catalogues of high-energy sources we used or may not yet be logged as LMXBs in Simbad. This was mainly done through queries of keywords such as binary, transient, and X-rays in the NASA ADS abstract service. Most new candidates discovered this way come from Astronomer’s Telegrams.
We note that at this point, we have made the data in the catalogue as reliable as possible; this kind of curated data-mining is, however, bound to contain small errors or oversights. This is why the catalogue is hosted on an independent website and, as our previous catalogue already did (Fortin et al. 2023b), it will receive gradual updates and new releases as new information is either found by ourselves or put forward by the community.
2.3 Finding an unambiguous chain of counterparts
As we previously argued in Fortin et al. (2023b), we believe that part of what consists of a secure identification as an LMXB or candidate LMXB is having an unambiguous list of counterparts, ideally from hard X-ray to infrared. Having this positional information is also a necessary tool for astronomers to prepare new observations in follow-up campaigns. The automated search for counterparts to each LMXB is not trivial, but it is still facilitated by positional data already present in Simbad and by the stored identifiers, which also contain information about the coordinates of the source and their accuracy. Our goal here is to perform a cone search on all the catalogues listed in Table 1 in order to retrieve a proper chain of counterparts from the high energies down to the infrared wavelengths. For this, we need an initial set of coordinates to query in these catalogues.
These starting coordinates are either the ones listed in Sim-bad, or the ones that we parsed from the list of identifiers available in Simbad, whichever is most accurate. For instance, the candidate LMXB IGR J17480–2446 has coordinates available in Simbad, but without any information on their accuracy. It does have another identifier, CXOGlb J174804.8–244648, which we can parse into a set of coordinates with an accuracy below the arcsecond scale as it comes from Chandra observations. This is a quick method that is capable of automatically retrieving accurate positional data from Simbad that may not necessarily be available in catalogues, but that was, for instance, derived in Astronomer’s Telegrams. In this particular case, this allowed us to instantly find the Chandra counterpart of IGR J17480–2446 (2CXO J174804.8–244649) with a cone search in the Chandra CSC 2 database (Evans et al. 2019).
This positional cross-match is still prone to false positives, as we have to carefully look within the catalogues on a sufficiently large area so that we do not miss any potential counterparts. This is why we also performed a recursive search within the produced list of counterparts, from the poorest to the most accurate catalogues (XMM-Newton, Chandra, 2MASS, Gaia). We note that for LMXBs closely grouped within globular clusters, this method is sometimes unable to automatically separate different chains of counterparts, especially for hard X-rays for which the astrometric precision is not accurate enough to separate closely grouped LMXBs in clusters. Thus, for LMXBs found in clusters, we manually checked the consistency of their counterparts to ensure each have a unique, precise localisation.
Queried catalogues for the counterpart search.
2.4 Contents of the catalogue
The general characteristics of Galactic LMXBs are presented in Table A.1. The full catalogue provides their Simbad identifier (Main ID field from Simbad) and a short list of the most used IDs we found in the literature. To build this list, we queried each known ID from Simbad in ADS and retrieved how many papers used them in their title, abstract, or full text. We ranked them from most popular to least popular, and thus provide identifiers that should reflect the community’s preferred naming convention. In this paper, we list the LMXBs under their most popular identifier, except for a few sources for which no popular ID can be recovered in ADS; in this case, we use their Simbad identifier. The online catalogue provides the full list of identifiers known by Simbad to facilitate queries in LMXBwebcat. The ‘Compact’ column provides information on the nature of the accreting compact object, and ‘Spectype’ refers to the spectral type of the donor star. When available, we list the distance inferred from Gaia EDR3 parallaxes by Bailer-Jones et al. (2021). We also cross-matched our LMXBs with the list of globular clusters from Baumgardt & Vasiliev (2021), which contains information about their distances inferred from various means, including Gaia parallaxes. Hence, in the case of a spatial association with a globular cluster we provide the name of the cluster and the inferred distance in the ‘Other distance’ column. In the text, we only keep the largest error bound for Gaia distances, and values are voluntarily rounded for the sake of readability; the unaltered numbers are available in the electronic versions of the catalogue. When there is no cluster association, the ‘Other distance’ column may also contain distance estimates from a number of other methods, which are available in the given references. Lastly, we indicate when one or several type I X-ray bursts were observed by providing a reference.
In Table A.2, we present the orbital parameters: orbital period, eccentricity, and semi-amplitude of the donor’s radial velocity. We also give details on the mass of each binary component – Mx for the compact object and Mo for the companion star – as well as information on the presence of a pulse period and its time derivative in the case where the compact object is an NS. Again, values are rounded for readability and are available in full in the electronic version of the catalogue.
The electronic version also provides extra information on the counterparts for each binary, namely their numerous identifiers, coordinates, and corresponding astrometric precision. The right ascension and declination are given in J2000, and astrometric uncertainties are the 90% positional errors retrieved from the queried catalogues. The full contents of the LMXB catalogue can be queried on Vizier or viewed and queried from the dedicated website LMXBwebcat10. The latter database will be updated regularly, and new versions of the catalogue will be published on the website; every change will be logged to track the evolution of each version, which will remain available alongside the latest upload.
We advise readers to remain critical of all the parameters we list in this catalogue and to check the references before using them in their own work. To ease the process, we implemented a flag system to quickly inform the reader about the reliability of each listed parameter. The flags appear as numbers in dedicated columns in the catalogue database; for the sake of readability, we use daggers in the text:
0 / (nothing): directly measured parameter. This flag is not displayed in Tables A.1 and A.2 or in LMXBwebcat. This includes companion spectral types inferred through spectroscopy, full orbital solutions derived from radial velocity follow-ups, orbital periods from pulse timing or eclipses, dynamical masses, NSs confirmed by the presence of type I bursts or a spin period, or compact object types identified through the measure of the dynamical mass. This also includes distances of globular clusters hosting LMXBs derived via the Gaia parallaxes of the cluster members.
1 (†): caution. The parameter is either indirectly measured or needs better constraints. This includes tentative orbital periods, rough estimations of spectral types from photometry, compact object masses and distances from spectral fitting, radial-velocity semi-amplitudes from empirical relations, or compact object types identified through comparison of X-ray spectra. It also includes all parameters for which we only have upper or lower limits on a direct measurement (i.e. most eccentricity measurements).
2 (††): warning. The parameter is assumed in the scope of a model and likely needs proper observational constraints. This also includes indirectly derived parameters with lower or upper limits.
For instance, out of the 75 BH LMXBs we list, only 19 are flagged as reliable BH (“0”) since direct evidence of the presence of a BH is hard to obtain, apart from deriving a dynamical mass greater than ~3 M⊙. Most BHs are thus flagged ‘1″” (N = 52), and only a few are flagged ‘2’ (N = 4) since this identification mostly comes from their X-ray spectrum resembling the one of typical BH LMXBs. The presence of an NS is, however, much easier to prove through the observation of type I X-ray bursts or the detection of a spin period; hence, 146 out of 176 NSs in LMXBs are flagged as being reliable. These flags can be used to quickly identify which LMXBs are worth revisiting to give better constraints on their set of parameters.
2.5 Gaia candidate counterparts
The only parameter flag that slightly differs from the others is the one attributed to the Gaia distances in Table A.1. Because LMXBs are generally very faint in the optical and nIR, and because there are so many late-type stars in the field, finding the true optical or nIR counterpart to an LMXB can be challenging even in the case where sub-arcsecond X-ray localisation is available, as interlopers can be present along with the true counterpart within the X-ray error circles. Hence, we propose candidate Gaia counterparts to LMXBs based on astrometric cross-matching as well as historical associations in the few cases where both deep and high-resolution optical or nIR imaging has been performed.
The Gaia distance flag does not refer to the reliability of the distance estimation; instead, it represents how the Gaia counterpart was associated with the LMXB. Gaia counterparts that we found compatible with either an XMM-Newton or Chandra detection (e.g. a sub-arcsecond scale association) and that do not have any other neighbour in the Gaia catalogue closer than 1″ are deemed secure, and as such we do not flag them. Gaia counterparts that were found only based on a Swift detection (e.g. an arcsecond scale association) are flagged as uncertain The Gaia counterparts flagged as “2”/†† are not necessarily unreliable, but they are not based on an association with an accurate soft X-ray detection. Instead, they come from a historical association with an optical counterpart. For instance, Sco X-1 has a Gaia counterpart but no soft X-ray position available in the Swift, Chandra, or XMM catalogues because of its tremendous X-ray brightness.
These Gaia candidate counterparts can be subject to change in further iterations of the database as new X-ray positional constraints or deeper optical and nIR imaging becomes available on LMXBs. There are ways to further determine the level of confidence in the Gaia counterparts we found, such as comparing their optical magnitudes to previously published survey data. Because LMXBs can be highly variable, we chose to perform a check between the distances inferred by Gaia parallax and the distances inferred by other means (‘other distance’, such as spectral energy distribution fitting or photospheric radius expansion in bursting sources). After removing the LMXBs that lie within clusters (since all of their distance information come from Gaia data), in Fig. 1 we plot the Gaia distances versus the other distances from the literature. A linear fitting excluding the data points with lower or upper limits returns a proportional coefficient of 1.03 and a systematic of 50 pc, which is satisfactory since we are comparing two completely independent sets of measurements. We note that this sub-sample is representative of the whole catalogue concerning the Gaia flags: we count four flag-0, a single flag-1, and six flag-2 Gaia counterparts in the fitted sample. This may indicate that our flagging system is a bit too strict, with the caveat of a low number of sources to work with.
3 Results, discussions, and byproducts
3.1 Catalogue statistics and uses
We present a list of 339 Galactic LMXBs and candidates in this new catalogue, as represented in Fig. 2. We note that contrary to the previous catalogue of Liu et al. (2007), we do include quiescent LMXB candidates (qLMXBs hereafter); 25 are present in the current version of our catalogue. Hence, after subtracting these qLMXBs to compare our total sample to Liu et al. (2007), we provide a 67% increase in the total number of LMXBs and candidates in the Milky Way. We have at least a tentative identification of compact object type for more than 250 LMXBs, with a predominance of NSs (70%) compared to BHs (30%). We compiled 150 orbital periods and 69 spin periods, which are, respectively, a 200% and 150% increase compared to the 2007 catalogue, showing the tremendous impact of new detections and follow-up studies on LMXBs. Out of the 176 NS LMXBs, 112 are known to be X-ray bursters.
In Fig. 3, we present the full Corbet diagram of NS XRBs in the Galaxy, compiling the data of the present catalogue for NS LMXBs with both the orbital period and spin period derived (N = 50) alongside the same data for HMXBs available in Fortin et al. (2023b). In this sample, the majority of the NSs in LMXB have spin periods lower than 10 ms (N = 39), a region exclusively dominated by LMXBs contrary to NSs in HMXBs that seldom have spin periods lower than 100 ms. LMXBs and HMXBs are generally well-separated in the Corbet diagram, although some symbiotic LMXBs (where the donor is an evolved, giant star) do overlap with HMXBs as consequence of a larger orbital separation and lower efficiency at transferring angular momentum.
In our previous catalogue dedicated to HMXBs, almost three quarters of the HMXBs were detected by Gaia and were of sufficient astrometric quality to invert the distance from the parallax; in this LMXB catalogue, we note that only about 40% of the sources (140) have a Gaia DR3 counterpart, and only 98 of them have distance information available in Bailer-Jones et al. (2021). This is explained by the fact that optical counterparts of LMXBs are fainter on average, and also because these are older astrophysical objects that had time to migrate out of the Galactic plane towards the bulge of the Milky Way, which is too far away for any source to have a reliable Gaia parallax, even when a counterpart is detected. This still allows us to localise ~30% of our LMXBs within the Galaxy thanks to Gaia as shown in Fig. 4. If we combine to the Gaia distances the ones found in the literature and the distances to globular clusters, we reach the number of 208 LMXBs with a distance estimation. We note that regardless of the method used for distance estimation (parallax, globular cluster association, or X-ray modelling), we advise the users to remain cautious of the determined distance values when considering individual systems as they may be subject to various biases, such as poor parallax quality, wrong association within a globular cluster, foreground star, and so on. When considering the whole sample, these biases should at least partly cancel out, but there are bound to be outliers.
To show the potential of the data we aggregated in this catalogue, we constructed the distribution of X-ray luminosities of the Galactic LMXBs using the 2SXPS Swift database (Evans et al. 2020). We combined the unabsorbed 0.3–10 keV Apec flux (labelled FAU0 in 2SXPS) with either the Gaia distances or, when not available, the ‘Other distance’ determination in the LMXB catalogue. In the case where the LMXBs are associated with globular clusters, we used the distance to the cluster. This luminosity distribution, shown in Fig. 5, is the first step to obtaining an estimation of the total X-ray budget of LMXBs in the Milky Way, and it is only presented here as an example of how this catalogue can be used. To go further, users may want to consider other methods of flux measurements from the 2SXPS catalogue, combine fluxes from other observatories such as XMM-Newton (Webb et al. 2020) or Chandra (Evans et al. 2019), and of course discuss the impact of the behaviour of LMXBs from quiescence to outburst on the average flux values available in the aforementioned catalogues.
Fig. 1 Comparison between distances to LMXBs from the literature versus the distances of the proposed Gaia counterparts inferred from their parallax. Only LMXBs that have both information and are not located within a cluster are plotted (N = 16); black arrows indicate lower or upper limits. The dashed black line is the best linear fit, excluding sources with only lower or upper limits (N = 11). |
Fig. 2 Edge-on view of 339 LMXBs in the Galaxy. Galactic latitudes are indicated in degrees. Background image credits: ESA/Gaia/DPAC. |
Fig. 3 Corbet diagram of 50 NS LMXBs in the current catalogue alongside the 78 NS HMXBs now available in Fortin et al. (2023b), which have both orbital and spin-period information (all flags included). Symbiotic LMXBs are indicated in green rhombuses. |
Fig. 4 Face-on view of 98 Galactic LMXBs with Gaia parallaxes. Bars indicate the 68% confidence interval in distance. Background image credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech). |
Fig. 5 Distribution of soft X-ray luminosities of Galactic LMXBs seen by Swift and with a distance determination (N = 89). |
3.2 Byproducts
A noteworthy byproduct of our work is the retrieval of information about INTEGRAL sources marked as unidentified in Bird et al. (2016). We kept five of them as candidate LMXBs, which appear in our catalogue; in Table B.1, we also provide a separate list for the 44 INTEGRAL sources for which we found an identification in the literature that is not present in Simbad. Most are background active galactic nuclei (AGNs) or cataclysmic variables (CVs). The purpose of this table is to provide easily digestible data for the CDS to update references in Simbad.
3.3 Discussion
After the publication of our previous HMXB catalogue and during the writing of this paper, a similar LMXB catalogue was released by Avakyan et al. (2023), where the authors list 349 Galactic LMXBs. We have similar approaches, as the authors also propose to update their database based on community inputs. We did find, however, notable differences: first and foremost, we do not cite previous catalogues as references for the parameters in our catalogue; instead, we look for the original studies cited in Liu et al. (2007) or Ritter & Kolb (2003) and update them when necessary. This results in a compilation of 570 unique references for the parameters we compile in the present catalogue. Secondly, we carefully review any reference provided by Simbad, as we have found many instances where they do not point to the original study deriving the cited parameter. For example, several companion spectral types are given in Yungelson & Lasota (2008), which is a paper discussing evolutionary models for BH LMXBs that happens to list these spectral types (and some other parameters such as orbital periods or mass ratios) coming from already published data. Thirdly, we are slightly more strict concerning the inclusion of LMXB candidates, as we do not list X-ray sources for which there is no particular indication of them being at least candidate LMXBs. For this reason, we did not include the following in our catalogue: AX J1824.5–2451, [BSP2003] 24, Swift J174038.1–273712, CXOGC J174538.0–290022, XMM J174544–2913.0, SWIFT J174553.7–290347, CXOGC J174622.2–290634, Swift J175233.9–290952, and NGC 6752 CX19. Thanks to our minute investigation of each LMXB candidate, we were also able to exclude duplicates where one or several counterparts of the same source were listed as independent LMXBs. This was the case for KS 17410293, IGR J17353–3539, TYC 6824–713–1, [ZGV2011] 9, and 3U 1728–16. Lastly, we provide corrected identifications for some sources that may have been wrongly reported to be LMXBs, such as the HMXB Cir X-1 (Jonker et al. 2007), the cataclysmic variable OGLE BLG-ELL-12042 (Gomez et al. 2021), and some which are less likely to be LMXBs ([PLV2002] CX10 is a candidate CV in Pooley et al. 2002).
It is of prime importance for a catalogue to carefully list references. Firstly, this provides at least some insurance to the users that the data were manually curated as, for now, there are no machine learning algorithms that outperform manual data mining in the literature as we present here. Secondly, we also find that it is important to acknowledge all the observational work done on LMXBs and X-ray binaries in general since, as the current catalogue shows, there are still many missing parameters on X-ray binaries that will only be derived thanks to regular proposals for follow-up observations by teams of astronomers. Lastly, the main motivator for such catalogues is to untangle the huge amount of information spread throughout the literature; citing previous catalogues as a source for data goes against this endeavour of making data more accessible to the community.
4 Conclusion
The continuous endeavour of catching X-ray transients and performing multi-wavelength follow-ups has led to the discovery of many new LMXBs and helped characterise their properties tremendously in these past 16 yr. To bring together all this information, we present a new catalogue of 339 Galactic LMXBs that constitutes a tool for further studies on either individual systems or their whole population. Being hosted on an independent website, LMXBwebcat, this catalogue is also ready to receive updates and corrections based on new publications or input from the community. Compared to the 187 LMXBs listed in Liu et al. (2007), the current number of known Galactic LMXBs has almost doubled, and given the upcoming observational landscape dedicated to high energies and transient sky astronomy (i.e. eROSITA, LSST, or SVOM), these numbers are likely to keep growing further.
It is therefore essential to continue monitoring new discoveries on X-ray binaries so that we are able to better grasp their properties as a population, their role in the Galactic ecology and how, at the endpoint of their evolution, they may become gravitational-wave sources detectable by LISA (Tauris 2018). We would also like to note that optical and nIR follow-ups are still much needed to complete the set of observables (such as spectral types or orbital solutions from radial velocities) available on LMXBs. We hope this catalogue can also be a tool to identify which parameter needs constraints and to facilitate the identification of ideal targets for astronomers to revisit.
Acknowledgements
The authors were supported by the LabEx UnivEarthS: Interface project I10 “Binary rEvolution: from binary evolution towards merging of compact objects”. S.C. is grateful to the CNES (Centre National d’Etudes Spatiales) for the funding of MINE (Multi-wavelength INTEGRAL Network). F.G. is a CONICET researcher and acknowledges support from PIP 0113 and PIBAA 1275 (CONICET). This work made use of NASA’s Astrophysics Data System (ADS) web services, and of the services associated to the Centre de Données Astronomiques de Strasbourg (CDS) Simbad and Vizier. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. Software: Topcat (Taylor 2005), MATPLOTLIB (Hunter 2007), NUMPY (van der Walt et al. 2011), scipy (Virtanen et al. 2020) and PYTHON from python.org
Appendix A Catalogue of Galactic LMXBs
Tables A.1 and A.2 are only available in electronic form as a single table at the CDS. The data can also be browsed and downloaded on LMXBWebcat (https://binary-revolution.github.io/LMXBwebcat).
The relevant references are listed below:
Albayati, A. C., Altamirano, D., Jaisawal, G. K., et al. 2021, MNRAS, 501, 261
Albayati, A. C., Bult, P., Altamirano, D., et al. 2023, MNRAS, 524, 2477
Altamirano, D., Casella, P., Patruno, A., Wijnands, R., & van der Klis, M. 2008a, ApJ, 674, L45
Altamirano, D., Cavecchi, Y., Patruno, A., et al. 2011, ApJ, 727, L18
Altamirano, D., Galloway, D., Chenevez, J., et al. 2008b, The Astronomer’s Telegram,1651, 1
Altamirano, D., Patruno, A., Heinke, C. O., et al. 2010, ApJ, 712, L58
Altamirano, D., Wijnands, R., Heinke, C. O., Sivakoff, G. R., & Pooley, D. 2012, The Astronomer’s Telegram, 4264, 1
Anderson, S. F., Wachter, S., Margon, B., et al. 1994, ApJ, 436, 319
Aoki, T., Dotani, T., Ebisawa, K., et al. 1992, PASJ, 44, 641
Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411
Armas Padilla, M., Degenaar, N., Patruno, A., et al. 2011, MNRAS, 417, 659
Armas Padilla, M., Degenaar, N., & Wijnands, R. 2013, MNRAS, 434, 1586
Armas Padilla, M., Rodríguez-Gil, P., Muñoz-Darias, T., et al. 2022, ApJ, 931, L9
Arnason, R. M., Sivakoff, G. R., Heinke, C. O., Cohn, H. N., & Lugger, P. M. 2015, ApJ, 807, 52
Ashcraft, T. A., Hynes, R. I., & Robinson, E. L. 2012, MNRAS, 424, 620
Augusteijn, T., Kuulkers, E., & van Kerkwijk, M. H. 2001, A&A, 375, 447
Bagińska, P., Różańska, A., Czerny, B., & Janiuk, A. 2021, ApJ, 912, 110
Baglio, M. C., D’Avanzo, P., Campana, S., et al. 2016, A&A, 587, A102
Baglio, M. C., Mainetti, D., D’Avanzo, P., et al. 2014, A&A, 572, A99
Bahramian, A., Britt, C., & Strader, J. 2018a, The Astronomer’s Telegram, 11342, 1
Bahramian, A., Gladstone, J. C., Heinke, C. O., et al. 2014, MNRAS, 441, 640
Bahramian, A., Heinke, C. O., Tudor, V., et al. 2017, MNRAS, 467, 2199
Bahramian, A., Tetarenko, A., Sivakoff, G., et al. 2018b, The Astronomer’s Telegram, 11646, 1
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147
Bailyn, C. D., Orosz, J. A., McClintock, J. E., & Remillard, R. A. 1995, Nature, 378, 157
Bałucińska-Church, M., Church, M. J., & Smale, A. P. 2004, MNRAS, 347, 334
Bandyopadhyay, R. M., Shahbaz, T., Charles, P. A., & Naylor, T. 1999, MNRAS, 306, 417
Barnes, A. D., Casares, J., Cornelisse, R., et al. 2007, MNRAS, 380, 1182
Barret, D. & Grindlay, J. E. 1995, ApJ, 440, 841
Bassa, C. G., Jonker, P. G., Steeghs, D., & Torres, M. A. P. 2009, MNRAS, 399, 2055
Baumgardt, H. & Vasiliev, E. 2021, MNRAS, 505, 5957
Bayless, A. J., Robinson, E. L., Mason, P. A., & Robertson, P. 2011, ApJ, 730, 43
Becker, W., Swartz, D. A., Pavlov, G. G., et al. 2003, ApJ, 594, 798
Beri, A., Sharma, R., Roy, P., et al. 2023, MNRAS, 521, 5904
Bezayiff, N. 2006, PhD thesis, University of California, Santa Cruz
Bhattacharyya, S. 2020, MNRAS, 498, 728
Bhattacharyya, S., Strohmayer, T. E., Markwardt, C. B., & Swank, J. H. 2006, ApJ, 639, L31
Blay, P., Camero, A., Connell, P., et al. 2008, in The 7th INTEGRAL Workshop, 78
Bogdanov, S. & Halpern, J. P. 2015, ApJ, 803, L27
Bogomazov, A. I., Cherepashchuk, A. M., Khruzina, T. S., & Tutukov, A. V. 2022, MNRAS, 514, 5375
Borozdin, K. N. & Trudolyubov, S. P. 2000, ApJ, 533, L131
Bozzo, E., Bahramian, A., Ferrigno, C., et al. 2018, A&A, 613, A22
Bozzo, E., Bazzano, A., Kuulkers, E., et al. 2014, The Astronomer’s Telegram, 5765, 1
Bozzo, E., Ferrigno, C., Kuulkers, E., et al. 2009, The Astronomer’s Telegram, 2198, 1
Bozzo, E., Pjanka, P., Romano, P., et al. 2016, A&A, 589, A42
Bozzo, E., Romano, P., Falanga, M., et al. 2015, A&A, 579, A56
Bozzo, E., Romano, P., Ferrigno, C., et al. 2013, A&A, 556, A30
Brandt, S., Budtz-Jørgensen, C., & Chenevez, J. 2006a, The Astronomer’s Telegram, 778, 1
Brandt, S., Budtz-Jorgensen, C., Chenevez, J., et al. 2006b, The Astronomer’s Telegram, 970, 1
Brandt, S., Budtz-Jørgensen, C., Gotz, D., Hurley, K., & Frontera, F. 2007, The Astronomer’s Telegram, 1054, 1
Brandt, S., Kuulkers, E., Bazzano, A., et al. 2005, The Astronomer’s Telegram, 622, 1
Britt, C. T., Strader, J., Chomiuk, L., et al. 2017, ApJ, 849, 21
Buisson, D. J. K., Altamirano, D., Armas Padilla, M., et al. 2021, MNRAS, 503, 5600
Buisson, D. J. K., Altamirano, D., Bult, P., et al. 2020, MNRAS, 499, 793
Bult, P., Altamirano, D., Arzoumanian, Z., et al. 2022a, ApJ, 935, L32
Bult, P., Altamirano, D., Arzoumanian, Z., et al. 2018, ApJ, 864, 14
Bult, P., Gorgone, N., Younes, G., Kouveliotou, C., & Harrison, F. 2017, The Astronomer’s Telegram, 11067, 1
Bult, P., Mancuso, G. C., Strohmayer, T. E., et al. 2022b, ApJ, 940, 81
Bult, P., Markwardt, C. B., Altamirano, D., et al. 2019, ApJ, 877, 70
Bult, P., Strohmayer, T. E., Malacaria, C., Ng, M., & Wadiasingh, Z. 2021, ApJ, 912, 120
Bult, P. M., Ng, M., Iwakiri, W., et al. 2022c, The Astronomer’s Telegram, 15425, 1
Cadelano, M., Pallanca, C., Ferraro, F. R., et al. 2017, ApJ, 844, 53
Cadolle Bel, M., Prat, L., Rodriguez, J., et al. 2009, A&A, 501, 1
Camilo, F., Reynolds, J. E., Ransom, S. M., et al. 2016, ApJ, 820, 6
Campana, S., Stella, L., Belloni, T., et al. 2002, A&A, 384, 163
Cantat-Gaudin, T. & Anders, F. 2020, A&A, 633, A99
Cao, H.-M., Migliori, G., Giroletti, M., et al. 2022, A&A, 657, A104
Carotenuto, F., Corbel, S., & Tzioumis, A. 2022, MNRAS, 517, L21
Casares, J. 2016, ApJ, 822, 99
Casares, J., Charles, P., & Kuulkers, E. 1998, ApJ, 493, L39
Casares, J. & Charles, P. A. 1994, MNRAS, 271, L5
Casares, J., Charles, P. A., & Marsh, T. R. 1995, MNRAS, 277, L45
Casares, J., Charles, P. A., & Naylor, T. 1992, Nature, 355, 614
Casares, J., Charles, P. A., Naylor, T., & Pavlenko, E. P. 1993, MNRAS, 265, 834
Casares, J., Cornelisse, R., Steeghs, D., et al. 2006, MNRAS, 373, 1235
Casares, J., Dubus, G., Shahbaz, T., Zurita, C., & Charles, P. A. 2002, MNRAS, 329, 29
Casares, J., Gonzalez Hernandez, J. I., Israelian, G., & Rebolo, R. 2010, MNRAS, 401, 2517
Casares, J., Muñoz-Darias, T., Torres, M. A. P., et al. 2022, MNRAS, 516, 2023
Casares, J., Rodriguez-Gil, P., Zurita, C., et al. 2012, The Astronomer’s Telegram, 4347, 1
Casares, J., Yanes-Rizo, I. V., Torres, M. A. P., et al. 2023, MNRAS, 526, 5209
Casares, J., Zurita, C., Shahbaz, T., Charles, P. A., & Fender, R. P. 2004, ApJ, 613, L133
Casella, P., Altamirano, D., Patruno, A., Wijnands, R., & van der Klis, M. 2008, ApJ, 674, L41
Castro-Tirado, A., Gorosabel, J., Walton, N., et al. 1998, IAU Circ., 6931, 1
Chakrabarty, D., Jonker, P. G., & Markwardt, C. B. 2019, The Astronomer’s Telegram, 13247, 1
Chakrabarty, D. & Morgan, E. H. 1998, Nature, 394, 346
Charles, P., Thorstensen, J., & Bowyer, S. 1978, MNRAS, 183, 29P
Chatterjee, D., Debnath, D., Chakrabarti, S. K., Mondal, S., & Jana, A. 2016, ApJ, 827, 88
Chaty, S. 2006, in VI Microquasar Workshop: Microquasars and Beyond, 14.1
Chaty, S. & Bessolaz, N. 2006, A&A, 455, 639
Chaty, S., Fortin, F., & López-Oramas, A. 2020, A&A, 637, A2
Chaty, S., Mignani, R. P., & Israel, G. L. 2006, MNRAS, 365, 1387
Chelovekov, I. V. & Grebenev, S. A. 2007, The Astronomer’s Telegram, 1094, 1
Chelovekov, I. V., Grebenev, S. A., Mereminskiy, I. A., & Prosvetov, A. V. 2017, Astronomy Letters, 43, 781
Chenevez, J., Alizai, K., Lepingwell, V. A., et al. 2018, The Astronomer’s Telegram, 11272, 1
Chenevez, J., Altamirano, D., Galloway, D. K., et al. 2011, MNRAS, 410, 179
Chenevez, J., Falanga, M., Kuulkers, E., et al. 2007, A&A, 469, L27
Chenevez, J., Kuulkers, E., Brandt, S., et al. 2012, The Astronomer’s Telegram, 4050, 1
Cherepashchuk, A. M., Khruzina, T. S., & Bogomazov, A. I. 2021, MNRAS, 508, 1389
Chevalier, C., Ilovaisky, S. A., & Charles, P. A. 1985, A&A, 147, L3
Chirenti, C. & Jasiulek, M. 2018, MNRAS, 476, 354
Chou, Y. & Jhang, Y.-W. 2023, ApJ, 951, 42
Cocchi, M., Bazzano, A., Natalucci, L., et al. 2001, A&A, 378, L37
Cocchi, M., Bazzano, A., Natalucci, L., et al. 2000, A&A, 357, 527
Cocchi, M., Bazzano, A., Natalucci, L., et al. 1999a, A&A, 346, L45
Cocchi, M., Bazzano, A., Natalucci, L., et al. 1998, ApJ, 508, L163
Cocchi, M., Natalucci, L., in’t Zand, J., et al. 1999b, IAU Circ., 7247, 3
Corbet, R. H. D. 2003, ApJ, 595, 1086
Corbet, R. H. D., Thorstensen, J. R., Charles, P. A., et al. 1986, MNRAS, 222, 15P
Cornelisse, R., Casares, J., Charles, P. A., & Steeghs, D. 2013, MNRAS, 432, 1361
Cornelisse, R., D’Avanzo, P., Campana, S., et al. 2012, MNRAS, 420, 3538
Cornelisse, R., Verbunt, F., in’t Zand, J. J. M., Kuulkers, E., & Heise, J. 2002a, A&A, 392, 931
Cornelisse, R., Verbunt, F., in’t Zand, J. J. M., et al. 2002b, A&A, 392, 885
Cornelisse, R., Wijnands, R., & Homan, J. 2007, MNRAS, 380, 1637
Corral-Santana, J. M., Torres, M. A. P., Shahbaz, T., et al. 2018, MNRAS, 475, 1036
Coti Zelati, F., de Ugarte Postigo, A., Russell, T. D., et al. 2021, A&A, 650, A69
Coti Zelati, F., Papitto, A., de Martino, D., et al. 2019, A&A, 622, A211
Courvoisier, T. J. L., Peacock, A., & Pakull, M. 1984, IAU Circ., 3932, 2
Crawford, F., Lyne, A. G., Stairs, I. H., et al. 2013, ApJ, 776, 20
Cui, W., Heindl, W. A., Swank, J. H., et al. 1997, ApJ, 487, L73
D’Avanzo, P., Campana, S., Casares, J., et al. 2009, A&A, 508, 297
Davidsen, A., Malina, R., & Bowyer, S. 1977, ApJ, 211, 866
De, K., Chakrabarty, D., Soria, R., et al. 2022a, ApJ, 928, L8
De, K., Mereminskiy, I., Soria, R., et al. 2022b, ApJ, 935, 36
De Cesare, G., Bazzano, A., Stratta, G., et al. 2006, in ESA Special Publication, Vol. 604, The X-ray Universe 2005, ed. A. Wilson, 259
de Martino, D., Casares, J., Mason, E., et al. 2014, MNRAS, 444, 3004
de Martino, D., Papitto, A., Belloni, T., et al. 2015, MNRAS, 454, 2190
Deeter, J. E., Boynton, P. E., & Pravdo, S. H. 1981, ApJ, 247, 1003
Degenaar, N., Altamirano, D., & Wijnands, R. 2012a, The Astronomer’s Telegram, 4219, 1
Degenaar, N., Jonker, P. G., Torres, M. A. P., et al. 2010, MNRAS, 404, 1591
Degenaar, N., Linares, M., Altamirano, D., & Wijnands, R. 2012b, ApJ, 759, 8
Degenaar, N., Wijnands, R., & Miller, J. M. 2014a, ApJ, 787, 67
Degenaar, N., Wijnands, R., Reynolds, M. T., et al. 2014b, ApJ, 792, 109
Dehiwalage, D. D., Clavel, M., Petrucci, P. O., & Henri, G. 2022, in SF2A-2022: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. Eds.: J. Richard, ed. J. Richard, A. Siebert, E. Lagadec, N. Lagarde, O. Venot, J. Malzac, J. B. Marquette, M. N’Diaye, & B. Briot, 39–42
Del Santo, M., Chenevez, J., Brandt, S., Bazzano, A., & Ubertini, P. 2007, The Astronomer’s Telegram, 1207, 1
Del Santo, M., Sidoli, L., Bazzano, A., et al. 2006, A&A, 456, 1105
Deloye, C. J., Heinke, C. O., Taam, R. E., & Jonker, P. G. 2008, MNRAS, 391, 1619
Deutsch, E. W., Margon, B., & Anderson, S. F. 2000, ApJ, 530, L21
Dieball, A., Knigge, C., Zurek, D. R., et al. 2005, ApJ, 634, L105
Dotani, T., Inoue, H., Murakami, T., Nagase, F., & Tanaka, Y. 1990, Nature, 347, 534
Draghis, P. A., Miller, J. M., Brumback, M. C., et al. 2023, ApJ, 954, 62
Ducci, L., Malacaria, C., Romano, P., et al. 2023, A&A, 674, A100
Echiburú, C. S., Guillot, S., Zhao, Y., et al. 2020, MNRAS, 495, 4508
Elebert, P., Reynolds, M. T., Callanan, P. J., et al. 2009, MNRAS, 395, 884
Engel, M. C., Heinke, C. O., Sivakoff, G. R., Elshamouty, K. G., & Edmonds, P. D. 2012, ApJ, 747, 119
Ferrigno, C., Bozzo, W., Sanna, A., et al. 2018, The Astronomer’s Telegram, 11957, 1
Filippenko, A. V., Leonard, D. C., Matheson, T., et al. 1999, PASP, 111, 969
Filippenko, A. V., Matheson, T., & Ho, L. C. 1995, ApJ, 455, 614
Filippenko, A. V., Matheson, T., Leonard, D. C., Barth, A. J., & van Dyk, S. D. 1997, PASP, 109, 461
Filippova, E., Bozzo, E., & Ferrigno, C. 2014, A&A, 563, A124
Finger, M. H., Koh, D. T., Nelson, R. W., et al. 1996, Nature, 381, 291
Fiocchi, M., Bazzano, A., Natalucci, L., Landi, R., & Ubertini, P. 2011, MNRAS, 414, L41
Focke, W. B., Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, in American Astronomical Society Meeting Abstracts, Vol. 195, American Astronomical Society Meeting Abstracts, 126.02
Fortin, F., Chaty, S., Coleiro, A., Tomsick, J. A., & Nitschelm, C. H. R. 2018, A&A, 618, A150
Fox, D. & Lewin, W. 1998, IAU Circ., 6964, 2
Fox, D. W., Lewin, W. H. G., Rutledge, R. E., et al. 2001, MNRAS, 321, 776
Galloway, D. K., Chakrabarty, D., & Lin, J. R. 2009, The Astronomer’s Telegram, 2094, 1
Galloway, D. K., Chakrabarty, D., Morgan, E. H., & Remillard, R. A. 2002a, ApJ, 576, L137
Galloway, D. K., Chakrabarty, D., Muno, M. P., & Savov, P. 2001, ApJ, 549, L85
Galloway, D. K., in’t Zand, J., Chenevez, J., et al. 2020, ApJS, 249, 32
Galloway, D. K., Markwardt, C. B., Morgan, E. H., Chakrabarty, D., & Strohmayer, T. E. 2005, ApJ, 622, L45
Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJS, 179, 360
Galloway, D. K., Psaltis, D., Chakrabarty, D., & Muno, M. P. 2003, ApJ, 590, 999
Galloway, D. K., Sokoloski, J. L., & Kenyon, S. J. 2002b, ApJ, 580, 1065
Gambino, A. F., Iaria, R., Di Salvo, T., et al. 2016, A&A, 589, A34
Gandolfi, G., Coletta, A., Ricci, D., et al. 1999, IAU Circ., 7174, 1
Gangopadhyay, T., Li, X.-D., Ray, S., Dey, M., & Dey, J. 2012, New A, 17, 43
Garcia, M., Baliunas, S. L., Doxsey, R., et al. 1983, ApJ, 267, 291
Garcia, M. R., Bailyn, C. D., Grindlay, J. E., & Molnar, L. A. 1989, ApJ, 341, L75
Garcia, M. R. & Grindlay, J. E. 1987, ApJ, 313, L59
Gendre, B., Barret, D., & Webb, N. 2003, A&A, 403, L11
Gilfanov, M., Revnivtsev, M., Sunyaev, R., & Churazov, E. 1998, A&A, 338, L83
Gonzalez Hernandez, J. I., Rebolo, R., & Casares, J. 2012, ApJ, 744, L25
Gonzalez Hernandez, J. I., Rebolo, R., Israelian, G., et al. 2008, ApJ, 679, 732
Gonzalez Hernandez, J. I., Rebolo, R., Israelian, G., et al. 2006, ApJ, 644, L49
Goodwin, A. J., Galloway, D. K., in’t Zand, J. J. M., et al. 2019, MNRAS, 486, 4149
Goodwin, A. J. & Woods, T. E. 2020, MNRAS, 495, 796
Gorgone, N. M., Kouveliotou, C., Negoro, H., et al. 2019, ApJ, 884, 168
Gosling, A. J., Bandyopadhyay, R. M., Miller-Jones, J. C. A., & Farrell, S. A. 2007, MNRAS, 380, 1511
Göǧüş¸, E., Finger, M. H., Kouveliotou, C., et al. 2004, ApJ, 609, 977
Grebenev, S. A., Molkov, S. V., Revnivtsev, M. G., & Sunyaev, R. A. 2007, in ESA Special Publication, Vol. 622, The Obscured Universe. Proceedings of the VI INTEGRAL Workshop, 3730376
Greenstein, G. 1972, Nature Physical Science, 238, 71
Greiner, J., Dennerl, K., & Predehl, P. 1996, A&A, 314, L21
Grindlay, J., Gursky, H., Schnopper, H., et al. 1976, ApJ, 205, L127
Guillot, S., Rutledge, R. E., Bildsten, L., et al. 2009, MNRAS, 392, 665
Güver, T. & Özel, F. 2013, ApJ, 765, L1
Hammerstein, E. K., Cackett, E. M., Reynolds, M. T., & Miller, J. M. 2018, MNRAS, 478, 4317
Hare, J., Kargaltsev, O., & Rangelov, B. 2018, ApJ, 865, 33
Harlaftis, E. T., Horne, K., & Filippenko, A. V. 1996, PASP, 108, 762
Hasinger, G. & van der Klis, M. 1989, A&A, 225, 79
Heida, M., Jonker, P. G., Torres, M. A. P., & Chiavassa, A. 2017, ApJ, 846, 132
Heinke, C. O., Bahramian, A., Degenaar, N., & Wijnands, R. 2015, MNRAS, 447, 3034
Heinke, C. O., Grindlay, J. E., & Edmonds, P. D. 2005, ApJ, 622, 556
Heinke, C. O., Grindlay, J. E., Lloyd, D. A., & Edmonds, P. D. 2003, ApJ, 588, 452
Hemphill, P. B., Schulz, N. S., Marshall, H. L., & Chakrabarty, D. 2021, ApJ, 920, 142
Hertz, P. & Wood, K. S. 1988, ApJ, 331, 764
Hertz, P., Wood, K. S., & Cominsky, L. R. 1997, ApJ, 486, 1000
Hinkle, K. H., Fekel, F. C., Joyce, R. R., et al. 2006, ApJ, 641, 479
Hjellming, R. M. & Rupen, M. P. 1995, Nature, 375, 464
Hoffman, J. A., Lewin, W. H. G., & Doty, J. 1977, ApJ, 217, L23
Homan, J., Belloni, T., van der Klis, M., et al. 2006, The Astronomer’s Telegram, 748, 1
Homan, J., Gendreau, K. C., Sanna, A., et al. 2021, The Astronomer’s Telegram, 14606, 1
Homan, J., van den Berg, M., Heinke, C., & Pooley, D. 2022, The Astronomer’s Telegram, 15640, 1
Homan, J. & Wijnands, R. 2003, The Astronomer’s Telegram, 169, 1
Homer, L., Anderson, S. F., Margon, B., Deutsch, E. W., & Downes, R. A. 2001a, ApJ, 550, L155
Homer, L., Charles, P. A., Hakala, P., et al. 2001b, MNRAS, 322, 827
Horne, K., Verbunt, F., & Schneider, D. P. 1986, MNRAS, 218, 63
Hynes, R. I., Schaefer, B. E., Baum, Z. A., et al. 2016, MNRAS, 459, 3596
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., & O’Brien, K. 2003, ApJ, 583, L95
Iaria, R., D’Aí, A., di Salvo, T., et al. 2009, A&A, 505, 1143
Iaria, R., Di Salvo, T., Matranga, M., et al. 2015, A&A, 577, A63
Iaria, R., Gambino, A. F., Di Salvo, T., et al. 2018, MNRAS, 473, 3490
Ilovaisky, S. A., Auriere, M., Koch-Miramond, L., et al. 1993, A&A, 270, 139
in’t Zand, J. J. M., Verbunt, F., Heise, J., et al. 1998, A&A, 329, L37
in’t Zand, J. J. M., Verbunt, F., Strohmayer, T. E., et al. 1999, A&A, 345, 100
in’t Zand, J., Linares, M., & Markwardt, C. 2014, The Astronomer’s Telegram, 5972, 1
in’t Zand, J., Verbunt, F., Heise, J., et al. 2004, Nuclear Physics B Proceedings Supplements, 132, 486
in’t Zand, J. J. M., Cornelisse, R., & Méndez, M. 2005a, A&A, 440, 287
in’t Zand, J. J. M., Cumming, A., van der Sluys, M. V., Verbunt, F., & Pols, O. R. 2005b, A&A, 441, 675
in’t Zand, J. J. M., Galloway, D. K., Kuulkers, E., & Goodwin, A. 2017, The Astronomer’s Telegram, 10567, 1
in’t Zand, J. J. M., Heise, J., Muller, J. M., et al. 1999, Nuclear Physics B Proceedings Supplements, 69, 228
in’t Zand, J. J. M., Hulleman, F., Markwardt, C. B., et al. 2003, A&A, 406, 233
in’t Zand, J. J. M., Jonker, P. G., Bassa, C. G., Markwardt, C. B., & Levine, A. M. 2009, A&A, 506, 857
in’t Zand, J. J. M., Markwardt, C. B., Bazzano, A., et al. 2002a, A&A, 390, 597
in’t Zand, J. J. M., van Kerkwijk, M. H., Pooley, D., et al. 2001, ApJ, 563, L41
in’t Zand, J. J. M., Verbunt, F., Kuulkers, E., et al. 2002b, A&A, 389, L43
Ioannou, Z., Robinson, E. L., Welsh, W. F., & Haswell, C. A. 2004, AJ, 127, 481
Iwakiri, W. B., Pottschmidt, K., Falkner, S., et al. 2019, ApJ, 878, 121
Iyer, N., Nandi, A., & Mandal, S. 2015, ApJ, 807, 108
Jain, C. & Paul, B. 2011, MNRAS, 413, 2
Jain, C., Paul, B., & Dutta, A. 2010, MNRAS, 409, 755
Jain, C., Paul, B., Joshi, K., Dutta, A., & Raichur, H. 2007, Journal of Astrophysics and Astronomy, 28, 175
Jaisawal, G. K., Naik, S., Gupta, S., Chenevez, J., & Epili, P. 2018, MNRAS, 478, 448
Jonker, P. G., Bassa, C. G., & Wachter, S. 2007a, MNRAS, 377, 1295
Jonker, P. G., Miller-Jones, J., Homan, J., et al. 2010, MNRAS, 401, 1255
Jonker, P. G., Steeghs, D., Chakrabarty, D., & Juett, A. M. 2007b, ApJ, 665, L147
Jonker, P. G., Steeghs, D., Nelemans, G., & van der Klis, M. 2005, MNRAS, 356, 621
Jonker, P. G. & van der Klis, M. 2001, ApJ, 553, L43
Jonker, P. G., van der Klis, M., & Groot, P. J. 2003a, MNRAS, 339, 663
Jonker, P. G., van der Klis, M., Homan, J., et al. 2001, ApJ, 553, 335
Jonker, P. G., van der Klis, M., Kouveliotou, C., et al. 2003b, MNRAS, 346, 684
Juett, A. M. & Chakrabarty, D. 2003, ApJ, 599, 498
Kaaret, P., in’t Zand, J. J. M., Heise, J., & Tomsick, J. A. 2002, ApJ, 575, 1018
Kaaret, P., in’t Zand, J. J. M., Heise, J., & Tomsick, J. A. 2003, ApJ, 598, 481
Kaaret, P., Morgan, E. H., Vanderspek, R., & Tomsick, J. A. 2006, ApJ, 638, 963
Kaaret, P., Prieskorn, Z., in’t Zand, J. J. M., et al. 2007, ApJ, 657, L97
Kalamkar, M., Yang, Y., Altamirano, D., et al. 2010, The Astronomer’s Telegram, 2881, 1
Kaluzny, J., Rozanska, A., Rozyczka, M., Krzeminski, W., & Thompson, I. B. 2012, ApJ, 750, L3
Kaptein, R. G., in’t Zand, J. J. M., Kuulkers, E., et al. 2000, A&A, 358, L71
Karitskaya, E. A. & Bochkarev, N. G. 1987, Astronomicheskij Tsirkulyar, 1477, 1
Kaur, R., Wijnands, R., Kamble, A., et al. 2017, MNRAS, 464, 170
Kaur, R., Wijnands, R., Patruno, A., et al. 2009, MNRAS, 394, 1597
Kennea, J. A. 2018, The Astronomer’s Telegram, 11311, 1
Kennea, J. A., Burrows, D. N., Chester, M., et al. 2005, The Astronomer’s Telegram, 632, 1
Kennea, J. A., Campana, S., Wijnands, R., et al. 2007, The Astronomer’s Telegram, 1209, 1
Kennea, J. A. & Negoro, H. 2019, The Astronomer’s Telegram, 12434, 1
Kennea, J. A., Palmer, D. M., Siegel, M. H., et al. 2020, The Astronomer’s Telegram, 13452, 1
Kennedy, M. R., Breton, R. P., Clark, C. J., et al. 2020, MNRAS, 494, 3912
Kirsch, M. G. F., Mukerjee, K., Breitfellner, M. G., et al. 2004, A&A, 423, L9
Kitamura, Y., Takahashi, H., & Fukazawa, Y. 2014, PASJ, 66, 6
Klein-Wolt, M., Wijnands, R., Swank, J. H., & Markwardt, C. B. 2007, The Astronomer’s Telegram, 1065, 1
Knight, A. H., Ingram, A., & Middleton, M. 2022, MNRAS, 514, 1908
Koo, J. W. C. & Haymes, R. C. 1980, ApJ, 239, L57
Kouveliotou, C., Finger, M. H., Fishman, G. J., et al. 1993, in American Institute of Physics Conference Series, Vol. 280, Compton Gamma-ray Observatory, ed. M. Friedlander, N. Gehrels, & D. J. Macomb, 319–323
Koyama, K., Kunieda, H., Takeuchi, Y., & Tawara, Y. 1991, ApJ, 370, L77
Krimm, H. A., Markwardt, C. B., Deloye, C. J., et al. 2007, ApJ, 668, L147
Krimm, H. A., Tomsick, J. A., Markwardt, C. B., et al. 2011, ApJ, 735, 104
Kuiper, L., Tsygankov, S. S., Falanga, M., et al. 2020, A&A, 641, A37
Kushwaha, A., Jayasurya, K. M., Agrawal, V. K., & Nandi, A. 2023, MNRAS, 524, L15
Kuśmierek, K., Madej, J., & Kuulkers, E. 2011, MNRAS, 415, 3344
Kuulkers, E., Homan, J., van der Klis, M., Lewin, W. H. G., & Méndez, M. 2002, A&A, 382, 947
Kuulkers, E., Kouveliotou, C., van der Horst, A. J., et al. 2011, arXiv e-prints, arXiv:1102.2102
Kuulkers, E. & Levine, A. M. 2006, The Astronomer’s Telegram, 837, 1
Kuulkers, E. & van der Klis, M. 1998, A&A, 332, 845
Lamer, G., Schwope, A. D., Predehl, P., et al. 2021, A&A, 647, A7
Langmeier, A., Sztajno, M., Vacca, W. D., Truemper, J., & Pietsch, W. 1986, in NATO Advanced Study Institute (ASI) Series C, Vol. 167, The Evolution of Galactic X-Ray Binaries, ed. J. Truemper, W. H. G. Lewin, & W. Brinkmann, 253
Leahy, D. A., Morsink, S. M., & Chou, Y. 2011, ApJ, 742, 17
Lewin, W. H. G., Clark, G., & Doty, J. 1976a, IAU Circ., 2922, 1
Lewin, W. H. G., Doty, J., Clark, G. W., et al. 1976b, ApJ, 207, L95
Li, Z., Qu, Z., Chen, L., et al. 2015, ApJ, 798, 56
Li, Z., Yu, W., Lu, Y., Pan, Y., & Falanga, M. 2022, ApJ, 935, 123
Liao, N.-H., Chou, Y., Hsieh, H.-E., & Chuang, P.-S. 2015, Publication of Korean Astronomical Society, 30, 593
Lin, D., Altamirano, D., Homan, J., et al. 2009, ApJ, 699, 60
Lin, J. & Yu, W. 2020, ApJ, 903, 37
Lindstrøm, C., Griffin, J., Kiss, L. L., et al. 2005, MNRAS, 363, 882
López, K. M., Jonker, P. G., Torres, M. A. P., et al. 2019, MNRAS, 482, 2149
Luna, G. J. M. 2023, A&A, 676, L2
Lutovinov, A., Revnivtsev, M., Molkov, S., & Sunyaev, R. 2005, A&A, 430, 997
MacDonald, R. K. D., Bailyn, C. D., Buxton, M., et al. 2014, ApJ, 784, 2
Maeda, Y., Koyama, K., Sakano, M., Takeshima, T., & Yamauchi, S. 1996, PASJ, 48, 417
Majczyna, A., Madej, J., Nalezyty, M., Rózanska, A., & Udalski, A. 2016, in 37th Meeting of the Polish Astronomical Society, ed. A. Rózanska & M. Bejger, Vol. 3, 133–136
Makishima, K., Mitsuda, K., Inoue, H., et al. 1983, ApJ, 267, 310
Mandal, M., Pal, S., Chauhan, J., Lohfink, A., & Bharali, P. 2023, MNRAS, 521, 881
Marino, A., Anitra, A., Mazzola, S. M., et al. 2022, MNRAS, 515, 3838
Markwardt, C., Swank, J., & Smith, E. 2001a, IAU Circ., 7707, 2
Markwardt, C. B., Cummings, J., & Krimm, H. 2008a, The Astronomer’s Telegram, 1616, 1
Markwardt, C. B., Halpern, J. P., Holland, S. T., et al. 2008b, The Astronomer’s Telegram, 1716, 1
Markwardt, C. B., Juda, M., & Swank, J. H. 2003a, IAU Circ., 8095, 2
Markwardt, C. B., Klein-Wolt, M., Swank, J. H., & Wijnands, R. 2007a, The Astronomer’s Telegram, 1069, 1
Markwardt, C. B., Krimm, H. A., & Swank, J. H. 2007b, The Astronomer’s Telegram, 1108, 1
Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 1999, ApJ, 512, L125
Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 2003b, The Astronomer’s Telegram, 164, 1
Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 2008c, The Astronomer’s Telegram, 1443, 1
Markwardt, C. B., Strohmayer, T. E., Swank, J. H., & Zhang, W. 2000, IAU Circ., 7482, 2
Markwardt, C. B., Swank, J. H., Krimm, H. A., Pereira, D., & Strohmayer, T. E. 2009, The Astronomer’s Telegram, 2107, 1
Markwardt, C. B., Swank, J. H., & Strohmayer, T. E. 2001b, in American Astronomical Society Meeting Abstracts, Vol. 199, American Astronomical Society Meeting Abstracts, 27.04
Markwardt, C. B., Swank, J. H., & Strohmayer, T. E. 2004, The Astronomer’s Telegram, 353, 1
Markwardt, C. B., Swank, J. H., Strohmayer, T. E., in’t Zand, J. J. M., & Marshall, F. E. 2002, ApJ, 575, L21
Marsh, T. R., Robinson, E. L., & Wood, J. H. 1994, MNRAS, 266, 137
Marshall, F. E., Ueda, Y., & Markwardt, C. B. 1999, IAU Circ., 7133, 3
Martí, J., Luque-Escamilla, P. L., & Muñoz-Arjonilla, Á. J. 2016, A&A, 596, A46
Marti, J., Mirabel, I. F., Duc, P. A., & Rodriguez, L. F. 1997, A&A, 323, 158
Masetti, N., Bianchini, A., Bonibaker, J., della Valle, M., & Vio, R. 1996, A&A, 314, 123
Masetti, N., Dal Fiume, D., Cusumano, G., et al. 2002, A&A, 382, 104
Masetti, N., Landi, R., Pretorius, M. L., et al. 2007, A&A, 470, 331
Masetti, N., Parisi, P., Jiménez-Bailón, E., et al. 2012, A&A, 538, A123
Mason, K. O., Bell-Burnell, S. J., & White, N. E. 1976, Nature, 262, 474
Mason, K. O., Middleditch, J., Nelson, J. E., et al. 1980, ApJ, 242, L109
Mason, P. A., Robinson, E. L., Gray, C. L., & Hynes, R. I. 2008, ApJ, 685, 428
Mata Sánchez, D., Muñoz-Darias, T., Casares, J., Corral-Santana, J. M., & Shahbaz, T. 2015, MNRAS, 454, 2199
Mata Sanchez, D., Munoz-Darias, T., Casares, J., et al. 2015, MNRAS, 449, L1
Mata Sánchez, D., Rau, A., Álvarez Hernández, A., et al. 2021, MNRAS, 506, 581
Matsuba, E., Dotani, T., Mitsuda, K., et al. 1995, PASJ, 47, 575
McClintock, J. E. & Remillard, R. A. 1986, ApJ, 308, 110
Mereminskiy, I. A., Grebenev, S. A., Krivonos, R. A., Chelovekov, I. V., & Sunyaev, R. A. 2017a, The Astronomer’s Telegram, 10256, 1
Mereminskiy, I. A., Grebenev, S. A., & Sunyaev, R. A. 2017b, Astronomy Letters, 43, 656
Meshcheryakov, A. V., Revnivtsev, M. G., Pavlinsky, M. N., Khamitov, I., & Bikmaev, I. F. 2010, Astronomy Letters, 36, 738
Migliari, S., Di Salvo, T., Belloni, T., et al. 2003, MNRAS, 342, 909
Mignani, R. P., Chaty, S., Mirabel, I. F., & Mereghetti, S. 2002, A&A, 389, L11
Mikhailov, K., van Leeuwen, J., & Jonker, P. G. 2017, ApJ, 840, 9
Mikołajewska, J., Zdziarski, A. A., Ziółkowski, J., Torres, M. A. P., & Casares, J. 2022, ApJ, 930, 9
Miller, J. M., Swihart, S. J., Strader, J., et al. 2020, ApJ, 904, 49
Miller-Jones, J. C. A., Sivakoff, G. R., Rupen, M., & Altamirano, D. 2011, The Astronomer’s Telegram, 3628, 1
Molina, M., Malizia, A., Masetti, N., et al. 2021, MNRAS, 507, 3423
Molla, A. A., Chakrabarti, S. K., Debnath, D., & Mondal, S. 2017, ApJ, 834, 88
Mondal, S. 2020, Advances in Space Research, 65, 693
Mondal, S. & Jithesh, V. 2023, MNRAS, 522, 2065
Morgan, E., Kaaret, P., & Vanderspek, R. 2005a, The Astronomer’s Telegram, 523, 1
Morgan, E., Swank, J., Markwardt, C., & Gehrels, N. 2005b, The Astronomer’s Telegram, 550, 1
Mori, H., Maeda, Y., Pavlov, G. G., Sakano, M., & Tsuboi, Y. 2005, Advances in Space Research, 35, 1137
Morihana, K., Sugizaki, M., Nakahira, S., et al. 2013, PASJ, 65, L10
Motch, C., Pedersen, H., Beuermann, K., Pakull, M. W., & Courvoisier, T. J. L. 1987, ApJ, 313, 792
Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T., & Fender, R. 2014, MNRAS, 437, 2554
Muñoz-Darias, T., de Ugarte Postigo, A., Russell, D. M., et al. 2013, MNRAS, 432, 1133
Muller, J. M., in’t Zand, J., Smith, M. J. S., et al. 1998a, IAU Circ., 6842, 2
Muller, J. M., Smith, M. J. S., D’Andreta, G., et al. 1998b, IAU Circ., 6867, 2
Muno, M. P., Chakrabarty, D., Galloway, D. K., & Savov, P. 2001, ApJ, 553, L157
Munoz-Darias, T., Motta, S., Stiele, H., & Belloni, T. 2011, The Astronomer’s Telegram, 3341, 1
Murakami, T., Inoue, H., Koyama, K., et al. 1983, PASJ, 35, 531
Murdin, P., Allen, D. A., Morton, D. C., Whelan, J. A. J., & Thomas, R. M. 1980, MNRAS, 192, 709
Najar, S., Rangelov, B., & Kargaltsev, O. 2020, in American Astronomical Society Meeting Abstracts, Vol. 235, American Astronomical Society Meeting Abstracts #235, 170.09
Natalucci, L., Bazzano, A., Cocchi, M., et al. 2000a, ApJ, 536, 891
Natalucci, L., Bazzano, A., Cocchi, M., et al. 2000b, ApJ, 543, L73
Natalucci, L., Cornelisse, R., Bazzano, A., et al. 1999, ApJ, 523, L45
Nath, S. K., Debnath, D., Chatterjee, K., et al. 2023, Advances in Space Research, 71, 1045
Nättilä, J., Miller, M. C., Steiner, A. W., et al. 2017, A&A, 608, A31
Negoro, H., Kawase, T., Sugizaki, M., et al. 2017, The Astronomer’s Telegram, 10708, 1
Negoro, H., Shidatsu, M., Mihara, T., et al. 2018, The Astronomer’s Telegram, 11696, 1
Neilsen, J., Steeghs, D., & Vrtilek, S. D. 2008, MNRAS, 384, 849
Nelson, L. A., Rappaport, S. A., & Joss, P. C. 1986, ApJ, 304, 231
Nespoli, E., Fabregat, J., & Mennickent, R. E. 2010, A&A, 516, A94
Ng, M., Bult, P. M., Sanna, A., et al. 2021a, The Astronomer’s Telegram, 14695, 1
Ng, M., Ray, P. S., Bult, P., et al. 2021b, ApJ, 908, L15
Ng, M., Ray, P. S., Strohmayer, T. E., et al. 2020, The Astronomer’s Telegram, 14124, 1
Novarino, M. L., Echeveste, M., Benvenuto, O. G., De Vito, M. A., & Ferrero, G. A. 2021, MNRAS, 508, 3812
Oda, S., Shidatsu, M., Nakahira, S., et al. 2019, PASJ, 71, 108
Onori, F., Fiocchi, M., Masetti, N., et al. 2021, MNRAS, 503, 472
Oosterbroek, T., Orlandini, M., Parmar, A. N., et al. 1999, A&A, 351, L33
Orosz, J. A., Groot, P. J., van der Klis, M., et al. 2002, ApJ, 568, 845
Orosz, J. A., Jain, R. K., Bailyn, C. D., McClintock, J. E., & Remillard, R. A. 1998, ApJ, 499, 375
Orosz, J. A. & Kuulkers, E. 1999, MNRAS, 305, 132
Orosz, J. A., Kuulkers, E., van der Klis, M., et al. 2001, ApJ, 555, 489
Orosz, J. A., McClintock, J. E., Remillard, R. A., & Corbel, S. 2004, ApJ, 616, 376
Özbey Arabaci, M., Kalemci, E., Tomsick, J. A., et al. 2012, ApJ, 761, 4
Özel, F., Gould, A., & Güver, T. 2012, ApJ, 748, 5
Özel, F., Güver, T., & Psaltis, D. 2009, ApJ, 693, 1775
Paduano, A., Bahramian, A., Miller-Jones, J. C. A., et al. 2021, MNRAS, 506, 4107
Pahari, M., Misra, R., Dewangan, G. C., & Pawar, P. 2015, ApJ, 814, 158
Paizis, A., Nowak, M. A., Chaty, S., et al. 2007, ApJ, 657, L109
Paizis, A., Nowak, M. A., Rodriguez, J., et al. 2015, ApJ, 808, 34
Paizis, A., Nowak, M. A., Wilms, J., et al. 2011, ApJ, 738, 183
Pan, H. C., Skinner, G. K., Sunyaev, R. A., & Borozdin, K. N. 1995, MNRAS, 274, L15
Papitto, A., Bozzo, E., Ferrigno, C., et al. 2011a, A&A, 535, L4
Papitto, A., Bozzo, E., Ferrigno, C., et al. 2013a, The Astronomer’s Telegram, 4959, 1
Papitto, A., D’Aì, A., Motta, S., et al. 2011b, A&A, 526, L3
Papitto, A., di Salvo, T., Burderi, L., et al. 2007, MNRAS, 375, 971
Papitto, A., Ferrigno, C., Bozzo, E., et al. 2011c, The Astronomer’s Telegram, 3556, 1
Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013b, Nature, 501, 517
Papitto, A., Riggio, A., di Salvo, T., et al. 2010, MNRAS, 407, 2575
Parikh, A., Wijnands, R., Degenaar, N., & Altamirano, D. 2017, The Astronomer’s Telegram, 10612, 1
Park, S. Q., Miller, J. M., McClintock, J. E., & Murray, S. S. 2005, ApJ, 618, L45
Parmar, A. N., Gottwald, M., Haberl, F., Giommi, P., & White, N. E. 1985a, in Recent Results on Cataclysmic Variables. The Importance of IUE and Exosat Results on Cataclysmic Variables and Low-Mass X-Ray Binaries, ed. W. R. Burke, 119
Parmar, A. N., Stella, L., & White, N. E. 1986, ApJ, 304, 664
Parmar, A. N., White, N. E., Giommi, P., et al. 1985b, IAU Circ., 4058, 2
Patel, S. K., Kouveliotou, C., Tennant, A., et al. 2004, Nuclear Physics B Proceedings Supplements, 132, 542
Patel, S. K., Zurita, J., Del Santo, M., et al. 2007, ApJ, 657, 994
Patruno, A., Haskell, B., & D’Angelo, C. 2012, ApJ, 746, 9
Paul, J., Goldwurm, A., Jourdain, E., et al. 1997, IAU Circ., 6746, 2
Pavlinsky, M. N., Grebenev, S. A., Lutovinov, A. A., Sunyaev, R. A., & Finoguenov, A. V. 2001, Astronomy Letters, 27, 297
Peterson, B. A., Wallace, P., Elliott, K. H., Hill, P. W., & Manchester, R. N. 1980, MNRAS, 190, 33P
Pike, S. N., Harrison, F. A., Tomsick, J. A., et al. 2021, ApJ, 918, 9
Pike, S. N., Negoro, H., Tomsick, J. A., et al. 2022, ApJ, 927, 190
Pintore, F., Sanna, A., Riggio, A., et al. 2014, The Astronomer’s Telegram, 5901, 1
Ponti, G., Bianchi, S., Muñoz-Darias, T., & Nandra, K. 2018, MNRAS, 481, L94
Ponti, G., De, K., Muñoz-Darias, T., Stella, L., & Nandra, K. 2017, MNRAS, 464, 840
Porquet, D., Grosso, N., Bélanger, G., et al. 2005a, A&A, 443, 571
Porquet, D., Grosso, N., Burwitz, V., et al. 2005b, A&A, 430, L9
Priedhorsky, W. 1986, Ap&SS, 126, 89
Prodan, S. & Murray, N. 2015, ApJ, 798, 117
Qiu, H., Zhou, P., Yu, W., Li, X., & Xu, X. 2017, ApJ, 847, 44
Rappaport, S., Nelson, L. A., Ma, C. P., & Joss, P. C. 1987, ApJ, 322, 842
Ratti, E. M., Bassa, C. G., Torres, M. A. P., et al. 2010, MNRAS, 408, 1866
Ratti, E. M., Jonker, P. G., Miller-Jones, J. C. A., et al. 2012a, MNRAS, 423, 2656
Ratti, E. M., Steeghs, D. T. H., Jonker, P. G., et al. 2012b, MNRAS, 420, 75
Ratti, E. M., van Grunsven, T. F. J., Torres, M. A. P., et al. 2013, MNRAS, 431, L10
Ravi, V. 2017, ApJ, 851, 114
Reig, P., Papadakis, I., & Kylafis, N. D. 2003, A&A, 398, 1103
Reis, R. C., Reynolds, M. T., Miller, J. M., et al. 2013, ApJ, 778, 155
Remillard, R., Levine, A. M., Morgan, E. H., Markwardt, C. B., & Swank, J. H. 2006, The Astronomer’s Telegram, 714, 1
Revnivtsev, M. & Sunyaev, R. 2003, A&A, 399, 699
Revnivtsev, M. G., Kniazev, A., Karasev, D. I., Berdnikov, L., & Barway, S. 2013, Astronomy Letters, 39, 523
Reynolds, A. P., Quaintrell, H., Still, M. D., et al. 1997, MNRAS, 288, 43
Rout, S. K., Vadawale, S., Garcia, J., & Connors, R. 2023, ApJ, 944, 68
Roy, J., Bhattacharyya, B., & Ray, P. S. 2014, The Astronomer’s Telegram, 5890, 1
Rupen, M. P., Dhawan, V., & Mioduszewski, A. J. 2002, IAU Circ., 7893, 2
Russell, D. M., Lewis, F., Doran, R., & Roberts, S. 2011, The Astronomer’s Telegram, 3116, 1
Russell, T. D., Del Santo, M., Marino, A., et al. 2022, MNRAS, 513, 6196
Russell, T. D., Miller-Jones, J. C. A., Sivakoff, G. R., Tetarenko, A. J., & JACPOT XRB Collaboration. 2018, The Astronomer’s Telegram, 11356, 1
Russell, T. D., Soria, R., Motch, C., et al. 2014, MNRAS, 439, 1381
Saha, D., Mandal, M., & Pal, S. 2023, MNRAS, 519, 519
Sakano, M., Warwick, R. S., Decourchelle, A., & Wang, Q. D. 2005, MNRAS, 357, 1211
Sanna, A., Bahramian, A., Bozzo, E., et al. 2018, A&A, 610, L2
Sanna, A., Bult, P., Ng, M., et al. 2022, MNRAS, 516, L76
Sanna, A., Papitto, A., Burderi, L., et al. 2017, A&A, 598, A34
Sanna, A., Uttley, P., Altamirano, D., et al. 2019, The Astronomer’s Telegram, 12447, 1
Sasaki, R., Maeda, T., Tsuboi, Y., et al. 2021, in Astronomical Society of the Pacific Conference Series, Vol. 528, New Horizons in Galactic Center Astronomy and Beyond, ed. M. Tsuboi & T. Oka, 391
Schultz, J. 2003, A&A, 397, 249
Seifina, E., Titarchuk, L., & Shaposhnikov, N. 2014, ApJ, 789, 57
Serino, M., Shidatsu, M., Ueda, Y., et al. 2015, PASJ, 67, 30
Shahbaz, T., González-Hernández, J. I., Breton, R. P., et al. 2022, MNRAS, 513, 71
Shahbaz, T., Kuulkers, E., Charles, P. A., et al. 1999, A&A, 344, 101
Shahbaz, T., Russell, D. M., Zurita, C., et al. 2013, MNRAS, 434, 2696
Shahbaz, T., Watson, C. A., & Hernandez-Peralta, H. 2007, MNRAS, 376, 1886
Shaposhnikov, N., Markwardt, C., Swank, J., & Krimm, H. 2010, ApJ, 723, 1817
Shaposhnikov, N., Markwardt, C. B., & Swank, J. H. 2009, The Astronomer’s Telegram, 2269, 1
Shaposhnikov, N., Titarchuk, L., & Haberl, F. 2003, ApJ, 593, L35
Sharma, P., Sharma, R., Jain, C., Dewangan, G. C., & Dutta, A. 2021, Research in Astronomy and Astrophysics, 21, 214
Shaw, A. W., Degenaar, N., Maccarone, T. J., et al. 2024, MNRAS, 527, 7603
Shaw, A. W., Heinke, C. O., Degenaar, N., et al. 2017, MNRAS, 471, 2508
Shaw, A. W., Heinke, C. O., Maccarone, T. J., et al. 2020, MNRAS, 492, 4344
Shi, C.-S. & Zhang, S.-N. 2020, MNRAS, 494, 4382
Shidatsu, M., Kobayashi, K., Negoro, H., et al. 2022, ApJ, 927, 151
Sidoli, L., Paizis, A., Mereghetti, S., Götz, D., & Del Santo, M. 2011, MNRAS, 415, 2373
Skinner, G. K., Foster, A. J., Willmore, A. P., & Eyles, C. J. 1990, MNRAS, 243, 72
Smale, A. P. 1991, PASP, 103, 636
Smale, A. P., Church, M. J., & Bałucinska-Church, M. 2001, ApJ, 550, 962
Smith, D. A., Morgan, E. H., & Bradt, H. 1997, ApJ, 479, L137
Smith, D. M., Heindl, W. A., & Swank, J. H. 2002, ApJ, 578, L129
Smith, D. M., Markwardt, C. B., Swank, J. H., & Negueruela, I. 2012, MNRAS, 422, 2661
Soria, R., Ma, R., Tao, L., & Zhang, S.-N. 2022, MNRAS, 515, 3105
Sridhar, N., Bhattacharyya, S., Chandra, S., & Antia, H. M. 2019, MNRAS, 487, 4221
Staubert, R., Klochkov, D., & Wilms, J. 2009, A&A, 500, 883
Steeghs, D. & Casares, J. 2002, ApJ, 568, 273
Steeghs, D. & Jonker, P. G. 2007, ApJ, 669, L85
Steeghs, D., McClintock, J. E., Parsons, S. G., et al. 2013, ApJ, 768, 185
Steiner, J. F., McClintock, J. E., & Reid, M. J. 2012, ApJ, 745, L7
Stoop, M., van den Eijnden, J., Degenaar, N., et al. 2021, MNRAS, 507, 330
Strader, J., Chomiuk, L., Cheung, C. C., et al. 2015, ApJ, 804, L12
Strader, J., Li, K.-L., Chomiuk, L., et al. 2016, ApJ, 831, 89
Strader, J., Swihart, S. J., Urquhart, R., et al. 2021, ApJ, 917, 69
Strohmayer, T. E., Arzoumanian, Z., Bogdanov, S., et al. 2018a, ApJ, 858, L13
Strohmayer, T. E., Jahoda, K., Giles, A. B., & Lee, U. 1997a, ApJ, 486, 355
Strohmayer, T. E. & Markwardt, C. B. 2010, The Astronomer’s Telegram, 2929, 1
Strohmayer, T. E. & Markwardt, C. B. 2011, The Astronomer’s Telegram, 3121, 1
Strohmayer, T. E., Markwardt, C. B., & Kuulkers, E. 2008, ApJ, 672, L37
Strohmayer, T. E. & Nicer Observatory Science Working Group. 2020, in American Astronomical Society Meeting Abstracts, Vol. 235, American Astronomical Society Meeting Abstracts #235, 159.02
Strohmayer, T. E., Ray, P. S., Gendreau, K. C., et al. 2018b, The Astronomer’s Telegram, 11507, 1
Strohmayer, T. E., Zhang, W., & Swank, J. H. 1997b, ApJ, 487, L77
Suleimanov, V. F., Poutanen, J., Nättilä, J., et al. 2017, MNRAS, 466, 906
Suleimanov, V. F., Poutanen, J., & Werner, K. 2020, A&A, 639, A33
Sunyaev, R. 1990, IAU Circ., 5104, 1
Sunyaev, R., Gilfanov, M., Churazov, E., et al. 1991, Pisma v Astronomicheskii Zhurnal, 17, 116
Sunyaev, R. & Kwant Team. 1989, IAU Circ., 4839, 1
Suzuki, K., Fukushima, K., Negoro, H., et al. 2015, The Astronomer’s Telegram, 7233, 1
Suzuki, M. & HETE Collaboration. 2005, in American Astronomical Society Meeting Abstracts, Vol. 207, American Astronomical Society Meeting Abstracts, 32.04
Swank, J. H., Becker, R. H., Pravdo, S. H., & Serlemitsos, P. J. 1976, IAU Circ., 2963, 1
Swank, J. H., Strohmayer, T. E., & Markwardt, C. B. 2003, in American Astronomical Society Meeting Abstracts, Vol. 203, American Astronomical Society Meeting Abstracts, 125.01
Sztajno, M., Fujimoto, M. Y., van Paradijs, J., et al. 1987, MNRAS, 226, 39
Sztajno, M., Langmeier, A., Frank, J., et al. 1985, IAU Circ., 4111, 1
Tananbaum, H., Gursky, H., Kellogg, E. M., et al. 1972, ApJ, 174, L143
Tetarenko, B. E., Sivakoff, G. R., Heinke, C. O., & Gladstone, J. C. 2016, ApJS, 222, 15
Thomas, N. T., Gudennavar, S. B., & Bubbly, S. G. 2023, MNRAS, 521, 433
Thorstensen, J., Charles, P., Bowyer, S., et al. 1979, ApJ, 233, L57
Thorstensen, J. R. & Armstrong, E. 2005, AJ, 130, 759
Titarchuk, L. & Seifina, E. 2023, A&A, 669, A57
Tomsick, J. A., Garcia, J., Fabian, A., et al. 2019, The Astronomer’s Telegram, 13270, 1
Tomsick, J. A., Halpern, J. P., Kemp, J., & Kaaret, P. 1999, ApJ, 521, 341
Tomsick, J. A., Heindl, W. A., Chakrabarty, D., & Kaaret, P. 2002, ApJ, 581, 570
Torrejón, J. M., Negueruela, I., Smith, D. M., & Harrison, T. E. 2010, A&A, 510, A61
Torres, M. A. P., Casares, J., Jiménez-Ibarra, F., et al. 2020, ApJ, 893, L37
Torres, M. A. P., Casares, J., Jiménez-Ibarra, F., et al. 2019a, ApJ, 882, L21
Torres, M. A. P., Casares, J., Martínez-Pais, I. G., & Charles, P. A. 2002, MNRAS, 334, 233
Torres, M. A. P., Jonker, P. G., Britt, C. T., et al. 2014, MNRAS, 440, 365
Torres, M. A. P., Jonker, P. G., Casares, J., Miller-Jones, J. C. A., & Steeghs, D. 2021, MNRAS, 501, 2174
Torres, M. A. P., Jonker, P. G., Miller-Jones, J. C. A., et al. 2015, MNRAS, 450, 4292
Torres, M. A. P., Jonker, P. G., Steeghs, D., et al. 2008, ApJ, 672, 1079
Torres, M. A. P., McClintock, J. E., Garcia, M. R., & Murray, S. S. 2004, The Astronomer’s Telegram, 233, 1
Torres, M. A. P., Repetto, S., Wevers, T., et al. 2019b, MNRAS, 487, 2296
Tse, K., Chou, Y., & Hsieh, H.-E. 2020, ApJ, 899, 120
Tucker, M. A., Shappee, B. J., Holoien, T. W. S., et al. 2018, ApJ, 867, L9
Ubertini, P., Bazzano, A., Cocchi, M., et al. 1999, ApJ, 514, L27
Uemura, M., Kato, T., Matsumoto, K., et al. 2000, PASJ, 52, L15
Urquhart, R., Bahramian, A., Strader, J., et al. 2020, ApJ, 904, 147
van den Berg, M. & Homan, J. 2017, ApJ, 834, 71
van den Berg, M., Homan, J., Fridriksson, J. K., & Linares, M. 2014, ApJ, 793, 128
van der Klis, M., Kitamoto, S., Tsunemi, H., & Miyamoto, S. 1991, MNRAS, 248, 751
van der Klis, M., Parmar, A., van Paradijs, J., et al. 1985, IAU Circ., 4044, 1
van Grunsven, T. F. J., Jonker, P. G., Verbunt, F. W. M., & Robinson, E. L. 2017, MNRAS, 472, 1907
van Paradijs, J., Penninx, W., Lewin, W. H. G., Sztajno, M., & Truemper, J. 1988, A&A, 192, 147
van Paradijs, J., van der Klis, M., van Amerongen, S., et al. 1990, A&A, 234, 181
Vargas, M., Goldwurm, A., Denis, M., et al. 1996, A&AS, 120, 291
Vincentelli, F. M., Cavecchi, Y., Casella, P., et al. 2020, MNRAS, 495, L37
Wachter, S. 1997, ApJ, 490, 401
Wachter, S., Hoard, D. W., Bailyn, C. D., Corbel, S., & Kaaret, P. 2002, ApJ, 568, 901
Wagner, R. M., Kreidl, T. J., Howell, S. B., & Starrfield, S. G. 1992, ApJ, 401, L97
Walter, R., Lubinski, P., Paltani, S., et al. 2007, A&A, 461, L17
Wang, L., Steeghs, D., Casares, J., et al. 2017, MNRAS, 466, 2261
Wang, S., Kawai, N., Shidatsu, M., et al. 2022, MNRAS, 514, 5320
Wang, S., Kawai, N., Shidatsu, M., et al. 2018, PASJ, 70, 67
Wang, Z. & Chakrabarty, D. 2004, ApJ, 616, L139
Watson, M. G. & Ricketts, M. J. 1978, MNRAS, 183, 35P
Webb, N. A., Naylor, T., Ioannou, Z., Charles, P. A., & Shahbaz, T. 2000, MNRAS, 317, 528
Welsh, W. F., Robinson, E. L., & Young, P. 2000, AJ, 120, 943
Weng, S.-S., Zhang, S.-N., Yi, S.-X., Rong, Y., & Gao, X.-D. 2015, MNRAS, 450, 2915
Werner, N., in’t Zand, J. J. M., Natalucci, L., et al. 2004, A&A, 416, 311
Wetuski, J., Hynes, R. I., Maccarone, T. J., et al. 2021, MNRAS, 506, 5619
White, N. E., Parmar, A. N., Sztajno, M., et al. 1984, ApJ, 283, L9
Wijnands, R., Homan, J., van der Klis, M., et al. 1997, ApJ, 490, L157
Wijnands, R., Méndez, M., van der Klis, M., et al. 1998, ApJ, 504, L35
Wijnands, R., Rol, E., Cackett, E., Starling, R. L. C., & Remillard, R. A. 2009, MNRAS, 393, 126
Wijnands, R., Strohmayer, T., & Franco, L. M. 2001, ApJ, 549, L71
Wijnands, R., Yang, Y. J., & Altamirano, D. 2012, MNRAS, 422, L91
Williams, D. R. A., Motta, S. E., Fender, R., et al. 2022, MNRAS, 517, 2801
Wilson, R. B., Zhang, S. N., Scott, M., et al. 1995, IAU Circ., 6207, 3
Wu, J., Jonker, P. G., Torres, M. A. P., et al. 2015a, MNRAS, 448, 1900
Wu, J., Orosz, J. A., McClintock, J. E., et al. 2016, ApJ, 825, 46
Wu, J., Orosz, J. A., McClintock, J. E., et al. 2015b, ApJ, 806, 92
Xu, Y., Harrison, F. A., Tomsick, J. A., et al. 2020, ApJ, 893, 30
Yadlapalli, N., Ravi, V., Yao, Y., Kulkarni, S. R., & Brisken, W. 2021, ApJ, 909, L27
Yanes-Rizo, I. V., Torres, M. A. P., Casares, J., et al. 2024, MNRAS, 527, 5949
Yanes-Rizo, I. V., Torres, M. A. P., Casares, J., et al. 2022, MNRAS, 517, 1476
Yao, Y., Kulkarni, S. R., Burdge, K. B., et al. 2021a, ApJ, 920, 120
Yao, Y., Kulkarni, S. R., Gendreau, K. C., et al. 2021b, ApJ, 920, 121
Yoshii, T., Kawai, N., Yatsu, Y., et al. 2016, in 41st COSPAR Scientific Assembly, Vol. 41, E1.16–24–16
Zdziarski, A. A., Ziółkowski, J., Bozzo, E., & Pjanka, P. 2016, A&A, 595, A52
Zhang, S. N., Harmon, B. A., Wilson, C. A., et al. 1994, IAU Circ., 6096, 1
Zhang, W., Swank, J. H., White, N. E., & Lapidus, I. 1997, in American Astronomical Society Meeting Abstracts, Vol. 190, American Astronomical Society Meeting Abstracts #190, 36.03
Zhong, J. & Wang, Z. 2011, ApJ, 729, 8
Zurita, C., Durant, M., Torres, M. A. P., et al. 2008, ApJ, 681, 1458
Appendix B INTEGRAL sources
Unidentified INTEGRAL sources from Bird et al. (2016) with available identification in the literature.
References
- Abdollahi, S., Acero, F., Baldini, L., et al. 2022, ApJS, 260, 53 [NASA ADS] [CrossRef] [Google Scholar]
- Amaro-Seoane, P., Andrews, J., Arca Sedda, M., et al. 2023, Living Rev. Relativity, 26, 2 [NASA ADS] [CrossRef] [Google Scholar]
- Armas Padilla, M., Corral-Santana, J. M., Borghese, A., et al. 2023, A&A 677, A186 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Asai, K., Mihara, T., & Matsuoka, M. 2022, PASJ, 74, 974 [NASA ADS] [CrossRef] [Google Scholar]
- Avakyan, A., Neumann, M., Zainab, A., et al. 2023, A&A, 675, A199 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147 [Google Scholar]
- Baumgardt, H., & Vasiliev, E. 2021, MNRAS, 505, 5957 [NASA ADS] [CrossRef] [Google Scholar]
- Bird, A. J., Bazzano, A., Malizia, A., et al. 2016, ApJS, 223, 15 [Google Scholar]
- Bozzo, E., Pavan, L., Ferrigno, C., et al. 2012, A&A, 544, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bradt, H. V. D., & McClintock, J. E. 1983, ARA&A, 21, 13 [NASA ADS] [CrossRef] [Google Scholar]
- Capitanio, F., Bird, A. J., Fiocchi, M., Scaringi, S., & Ubertini, P. 2011, ApJS, 195, 9 [NASA ADS] [CrossRef] [Google Scholar]
- Chaty, S. 2022, Accreting Binaries; Nature, Formation, and Evolution (IOP Publishing) [CrossRef] [Google Scholar]
- Clavel, M., Tomsick, J. A., Bodaghee, A., et al. 2016, MNRAS, 461, 304 [NASA ADS] [CrossRef] [Google Scholar]
- Corbet, R. H. D., Chomiuk, L., Coe, M. J., et al. 2019, ApJ, 884, 93 [Google Scholar]
- Corral-Santana, J. M., Casares, J., Munoz-Darias, T., et al. 2016, A&A, 587, A61 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cowperthwaite, P. S., Massaro, F., D’Abrusco, R., et al. 2013, AJ, 146, 110 [NASA ADS] [CrossRef] [Google Scholar]
- Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog: II/246 [Google Scholar]
- Evans, I. N., Primini, F. A., Glotfelty, C. S., et al. 2019, VizieR Online Data Catalog: IX/57 [Google Scholar]
- Evans, P. A., Page, K. L., Osborne, J. P., et al. 2020, ApJS, 247, 54 [Google Scholar]
- Fiocchi, M., Bassani, L., Bazzano, A., et al. 2010, ApJ, 720, 987 [NASA ADS] [CrossRef] [Google Scholar]
- Forman, W., Jones, C., Cominsky, L., et al. 1978, ApJS, 38, 357 [Google Scholar]
- Fortin, F., Chaty, S., Coleiro, A., Tomsick, J. A., & Nitschelm, C. H. R. 2018, A&A, 618, A150 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Fortin, F., Chaty, S., & Tomsick, J. 2023a, ATel, 16099, 1 [NASA ADS] [Google Scholar]
- Fortin, F., García, F., Simaz Bunzel, A., & Chaty, S. 2023b, A&A, 671, A149 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Foschini, L. 2002, Understanding the nature of the unidentified EGRET source 3EG J1631-4033, Chandra Proposal ID 04508160 [Google Scholar]
- Gaia Collaboration 2022, VizieR Online Data Catalog: I/355 [Google Scholar]
- Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJS, 179, 360 [NASA ADS] [CrossRef] [Google Scholar]
- Galloway, D. K., in’t Zand, J., Chenevez, J., et al. 2020, ApJS, 249, 32 [NASA ADS] [CrossRef] [Google Scholar]
- Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, Phys. Rev. Lett., 9, 439 [NASA ADS] [CrossRef] [Google Scholar]
- Gomez, S., Torres, M. A. P., Jonker, P. G., et al. 2021, MNRAS, 502, 48 [NASA ADS] [CrossRef] [Google Scholar]
- Harris, D. E., Forman, W., Gioia, I. M., et al. 1990, Einstein Observatory Catalog of IPC X-ray Sources, 2 [Google Scholar]
- Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
- Jonker, P. G., Nelemans, G., & Bassa, C. G. 2007, MNRAS, 374, 999 [Google Scholar]
- Landi, R., Bassani, L., Malizia, A., et al. 2010a, MNRAS, 403, 945 [NASA ADS] [CrossRef] [Google Scholar]
- Landi, R., Bassani, L., Bazzano, A., et al. 2017a, MNRAS, 470, 1107 [CrossRef] [Google Scholar]
- Landi, R., Malizia, A., Bassani, L., et al. 2017b, ATel, 10467, 1 [NASA ADS] [Google Scholar]
- Landi, R., Masetti, N., Bazzano, A., et al. 2010b, ATel, 3065, 1 [NASA ADS] [Google Scholar]
- Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2001, A&A, 368, 1021 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2007, A&A, 469, 807 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Maiorano, E., Landi, R., Stephen, J. B., et al. 2011, MNRAS, 416, 531 [NASA ADS] [Google Scholar]
- Malizia, A., Landi, R., Molina, M., et al. 2016, MNRAS, 460, 19 [NASA ADS] [CrossRef] [Google Scholar]
- Malizia, A., Landi, R., Bassani, L., et al. 2017, ATel, 10468, 1 [NASA ADS] [Google Scholar]
- Masetti, N., Parisi, P., Jiménez-Bailon, E., et al. 2012, A&A, 538, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Masetti, N., Malizia, A., Landi, R., et al. 2017, ATel, 10447, 1 [NASA ADS] [Google Scholar]
- Molina, M., Landi, R., Bassani, L., et al. 2012, A&A, 548, A32 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Onori, F., Fiocchi, M., Masetti, N., et al. 2021, MNRAS, 503, 472 [NASA ADS] [CrossRef] [Google Scholar]
- Özbey Arabaci, M., Kalemci, E., Tomsick, J. A., et al. 2012, ApJ, 761, 4 [CrossRef] [Google Scholar]
- Paliya, V. S., Koss, M., Trakhtenbrot, B., et al. 2019, ApJ, 881, 154 [NASA ADS] [CrossRef] [Google Scholar]
- Pooley, D., Lewin, W. H. G., Verbunt, F., et al. 2002, ApJ, 573, 184 [NASA ADS] [CrossRef] [Google Scholar]
- Ritter, H., & Kolb, U. 2003, A&A, 404, 301 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ritter, H., & Kolb, U. 2011, VizieR Online Data Catalog: B/cb [Google Scholar]
- Sguera, V., Sidoli, L., Bird, A. J., Paizis, A., & Bazzano, A. 2020, MNRAS, 491, 4543 [NASA ADS] [CrossRef] [Google Scholar]
- Tauris, T. M. 2018, Phys. Rev. Lett., 121, 131105 [NASA ADS] [CrossRef] [Google Scholar]
- Tauris, T. M., & van den Heuvel, E. P. J. 2023, Physics of Binary Star Evolution. From Stars to X-ray Binaries and Gravitational Wave Sources (Princeton University Press) [Google Scholar]
- Taylor, M. B. 2005, ASP Conf. Ser., 347, 29 [Google Scholar]
- Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2009, ApJ, 701, 811 [NASA ADS] [CrossRef] [Google Scholar]
- Tomsick, J. A., Bodaghee, A., Chaty, S., et al. 2012, ApJ, 754, 145 [NASA ADS] [CrossRef] [Google Scholar]
- Tomsick, J. A., Bodaghee, A., Chaty, S., et al. 2020, ApJ, 889, 53 [NASA ADS] [CrossRef] [Google Scholar]
- Ursini, F., Bassani, L., Malizia, A., et al. 2019, ATel, 12840, 1 [NASA ADS] [Google Scholar]
- van der Walt, S., Colbert, C., & Varoquaux, G. 2011, CSE, 13 [Google Scholar]
- van Paradijs, J. 1983, in Accretion-Driven Stellar X-ray Sources, eds. W. H. G. Lewin, & E. P. J. van den Heuvel, 192 [Google Scholar]
- van Paradijs, J. 1995, in X-ray Binaries, 536 [Google Scholar]
- Vasiliev, E., & Baumgardt, H. 2021, MNRAS, 505, 5978 [NASA ADS] [CrossRef] [Google Scholar]
- Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261 [CrossRef] [Google Scholar]
- Warwick, R. S., Marshall, N., Fraser, G. W., et al. 1981, MNRAS, 197, 865 [NASA ADS] [CrossRef] [Google Scholar]
- Webb, N. A., Coriat, M., Traulsen, I., et al. 2020, A&A, 641, A136 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- White, N. E., Giommi, P., & Angelini, L. 2000, VizieR Online Data Catalog: IX/31 [Google Scholar]
- Wood, K. S., Meekins, J. F., Yentis, D. J., et al. 1984, ApJS, 56, 507 [Google Scholar]
- Yungelson, L., & Lasota, J. P. 2008, New Astron. Rev., 51, 860 [CrossRef] [Google Scholar]
- Zhang, S., Chen, Y. P., Wang, J. M., Li, T. P., & Ge, J. Q. 2009, A&A, 497, 347 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Available at https://research.iac.es/proyecto/compactos/UltraCompCAT/
All Tables
Unidentified INTEGRAL sources from Bird et al. (2016) with available identification in the literature.
All Figures
Fig. 1 Comparison between distances to LMXBs from the literature versus the distances of the proposed Gaia counterparts inferred from their parallax. Only LMXBs that have both information and are not located within a cluster are plotted (N = 16); black arrows indicate lower or upper limits. The dashed black line is the best linear fit, excluding sources with only lower or upper limits (N = 11). |
|
In the text |
Fig. 2 Edge-on view of 339 LMXBs in the Galaxy. Galactic latitudes are indicated in degrees. Background image credits: ESA/Gaia/DPAC. |
|
In the text |
Fig. 3 Corbet diagram of 50 NS LMXBs in the current catalogue alongside the 78 NS HMXBs now available in Fortin et al. (2023b), which have both orbital and spin-period information (all flags included). Symbiotic LMXBs are indicated in green rhombuses. |
|
In the text |
Fig. 4 Face-on view of 98 Galactic LMXBs with Gaia parallaxes. Bars indicate the 68% confidence interval in distance. Background image credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech). |
|
In the text |
Fig. 5 Distribution of soft X-ray luminosities of Galactic LMXBs seen by Swift and with a distance determination (N = 89). |
|
In the text |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.