Open Access
Issue
A&A
Volume 684, April 2024
Article Number A124
Number of page(s) 13
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/202347908
Published online 26 April 2024

© The Authors 2024

Licence Creative CommonsOpen Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

1 Introduction

More than 60 yr have passed since the identification of the first extrasolar X-ray source (Giacconi et al. 1962). This particular source, Scorpius X-1, belongs to the category of low-mass X-ray binaries (LMXB), which are composed of a compact object – either a black hole (BH) or a neutron star (NS) – that accretes material from a low-mass companion star (M ≲ 1 M. LMXBs are soft X-ray emitters powered by mass transfer happening through Roche-lobe overflow (see a general review on accreting binaries in Chaty 2022). An accretion disc can form around the compact object and can be responsible for the majority of the radiation emitted during periods of high activity from X-rays down to infrared wavelengths. The formation of relativistic jets commonly occurs during specific phases of activity in micro-quasars (i.e. BH LMXBs). However, these X-ray systems are but a single phase in the whole evolution of binary stars, from their formation up to their endpoint as compact binaries and gravitational wave sources (see a recent review by Tauris & van den Heuvel 2023).

As a follow-up to our previous work on building an updated catalogue of Galactic high-mass X-ray binaries (HMXBs, Fortin et al. 2023b, now containing more than 160 sources in HMXB-webcat1), we present our latest catalogue of 339 LMXBs in the Milky Way here. Information available on LMXBs in the literature suffers from the same caveat as HMXBs: as these sources are inherently difficult to observe and require multi-wavelength and time series campaigns to be properly constrained, most of the discoveries on LMXBs end up spread over several years and can come from many different teams of researchers across the world. This is why the catalogue presented in this paper is centred on two important concepts. Firstly, for each parameter listed, we provide the original reference where it was derived; this results in a compilation of more than 600 unique, curated references. Secondly, in parallel to being hosted in Vizier in a fixed version, we host it independently on a dedicated website, LMXBwebcat, on which the database is able to receive updates through our GitHub collaboration2 as new observations are made, and new or updated parameters of already known sources become available. Hence, this catalogue is open-source, and we invite the community to participate in adding their discoveries and updates on LMXBs, or correct any omission they may identify in our catalogue.

Since the late 90s, X-ray observatories such as INTEGRAL3, XMM-Newton4, Chandra, Swift, and MAXI5 have participated in the discovery of new LMXBs and gaining in-depth knowledge on their intrinsic parameters such as orbital data, companion mass, or the exact nature of the accreting compact object. All of this information would benefit from being compiled together to facilitate further studies on LMXBs. However, the need for such a catalogue is not only motivated by the observational progresses of the past 16 yr, it is also the upcoming facilities dedicated to the high energy and transient sky, such as eROSITA, LSST6, and SVOM7, that warrant keeping a constantly up-to-date catalogue in anticipation of the amount of new data that will be available on X-ray binaries. In turn, this will also allow us to better predict the population of gravitational-wave sources that LISA8 will be able to detect (see the white paper Amaro-Seoane et al. 2023).

The first instances of LMXB catalogues date back to the 1980s (Bradt & McClintock 1983; van Paradijs 1983) and counted roughly 33 X-ray systems. Subsequent catalogues were made following the advancements of space-based X-ray observatories, namely the ones presented in van Paradijs (1995), Liu et al. (2001), and, finally, the latest and most used catalogue to date of 187 Galactic LMXBs by Liu et al. (2007).

In this paper, we first describe the method we followed to build the catalogue (Sect. 2, which follows a similar structure to what we presented in our HMXB catalogue Fortin et al. 2023b), namely for the recovery of parameters and numerous counterparts to each LMXB. In Sect. 3, we discuss the catalogue itself and how it compares to previous iterations and other similar catalogues. We also discuss the potential uses of our catalogue and conclude on this work in Sect. 4.

2 Building the catalogue

In this section, we provide a step-by-step description of the tasks we performed to build the catalogue. We adopted a very similar approach to that presented in the twin catalogue dedicated to HMXBs (Fortin et al. 2023b), such as using pre-existing catalogues of high-energy sources as a starting base. We relied on the services of the Centre de Données Astronomiques de Strasbourg (CDS) such as Simbad and Vizier, and of course minute manual research through references using NASA’s Astrophysics Data System (ADS) abstract search engine.

2.1 Reference catalogues and building a working base

More than 16 yr after publication, the LMXB catalogue by Liu et al. (2007) is still the most used reference; at that time, the authors listed 187 LMXBs and candidates in the Milky Way. We supplemented this list with the catalogue of INTEGRAL detections (Bird et al. 2016), which contains 939 hard X-ray sources of various nature. We only kept the sources labelled LMXB or unidentified, thus adding 345 sources. We identified sources common to both Liu et al. (2007) and Bird et al. (2016) using positional and identifier cross-matching performed with TOPCAT (Taylor 2005). We then queried Simbad for all the sources containing the type (or subtype) LXB; this returns a list of 674 sources, most of which are extragalactic. These are usually grouped in small clusters around their host galaxy; hence, we used the same spatial filtering method as that presented in Fortin et al. (2023b), where we check each source for the presence of close neighbours. However, contrary to HMXBs, LMXBs are known to be present in globular clusters, and these structures may hold up to ~10 LMXBs very close together (as is the case in NGC 6440, for instance). Hence, we used the list of globular clusters available in Vasiliev & Baumgardt (2021) to check the likelihood of a group of LMXBs being part of a Galactic globular cluster, before filtering them out if they have neighbours closer than 10′. This way, we retrieved 251 Galactic LMXB candidates from Simbad.

Eventually, after cross-matching the Simbad LXBs with the sample of high energy sources from Liu et al. (2007) and Bird et al. (2016), we obtain a working base of 573 sources. We note that a significant amount (216) were listed in the INTEGRAL catalogue as unidentified, and most of them will be discarded through a thorough manual process of checking new information published on these sources in the literature.

2.2 Retrieving binary parameters and new LMXBs

While pieces of information are available on the LMXBs and candidates compiled so far (mainly from the data catalogued in Liu et al. 2007; Ritter & Kolb 2011, and Simbad), our goal for this catalogue is to perform a thorough investigation on each of these sources to, firstly, identify which are interesting LMXB candidates, and, secondly, retrieve useful parameters as well as the original studies that derived them (this includes double checking references already compiled by former catalogues). We find that the later point is especially important, as some parameters listed might have been derived using different methods for each source; this information should be readily available for authors of further studies that revisit these sources. Thus, during the individual search for information on each of these sources, we only used already available data as a starting point for the manual search, and we systematically re-verified already available references. We compile new and updated data whenever they are available, confirm the already measured parameters by retrieving the original studies, and we search for older publications to ensure we have compiled every piece of information possible for each binary. Hence, none of the parameters or references we list in the catalogue come from an automated, unsupervised query on Simbad. We did use the resources in works that already compiled some useful data on LMXBs, such as spectral types, orbital periods and masses in Yungelson & Lasota (2008); a list of type I X-ray bursts seen be RXTE in Galloway et al. (2008) and its extension to BeppoSAX and INTEGRAL MINBAR (Galloway et al. 2020); orbital periods in Asai et al. (2022); the catalogue of stellar-mass black holes in X-ray binaries BlackCAT (Corral-Santana et al. 2016); or the latest catalogue of Ultra-Compact X-ray Binaries UltraCompCAT (Armas Padilla et al. 2023, which is also a dynamic database9).

Because LMXBs can be highly variable sources, we settled on a list of parameters to look for that we believe are representative of the systems at all times. These are the spectral type of the companion star, the nature of the accreting compact object, masses of the binary components, the orbital parameters, the radial velocity of the centre of mass, the presence of a spin period and its time derivative, and the detection of type-I X-ray bursts. We tried not to log any ‘assumed’ values for any parameters – such as when NSs are assumed to be 1.4 M in orbital solutions or when the LMXBs are being located at 8 kpc by default if they are near the Galactic centre – unless they are motivated or indirectly constrained by other measurements.

Lastly, we performed “blind” searches within the literature for newly detected LMXBs and candidates in papers ranging from 2016 to 2023 that may not appear in either of the catalogues of high-energy sources we used or may not yet be logged as LMXBs in Simbad. This was mainly done through queries of keywords such as binary, transient, and X-rays in the NASA ADS abstract service. Most new candidates discovered this way come from Astronomer’s Telegrams.

We note that at this point, we have made the data in the catalogue as reliable as possible; this kind of curated data-mining is, however, bound to contain small errors or oversights. This is why the catalogue is hosted on an independent website and, as our previous catalogue already did (Fortin et al. 2023b), it will receive gradual updates and new releases as new information is either found by ourselves or put forward by the community.

2.3 Finding an unambiguous chain of counterparts

As we previously argued in Fortin et al. (2023b), we believe that part of what consists of a secure identification as an LMXB or candidate LMXB is having an unambiguous list of counterparts, ideally from hard X-ray to infrared. Having this positional information is also a necessary tool for astronomers to prepare new observations in follow-up campaigns. The automated search for counterparts to each LMXB is not trivial, but it is still facilitated by positional data already present in Simbad and by the stored identifiers, which also contain information about the coordinates of the source and their accuracy. Our goal here is to perform a cone search on all the catalogues listed in Table 1 in order to retrieve a proper chain of counterparts from the high energies down to the infrared wavelengths. For this, we need an initial set of coordinates to query in these catalogues.

These starting coordinates are either the ones listed in Sim-bad, or the ones that we parsed from the list of identifiers available in Simbad, whichever is most accurate. For instance, the candidate LMXB IGR J17480–2446 has coordinates available in Simbad, but without any information on their accuracy. It does have another identifier, CXOGlb J174804.8–244648, which we can parse into a set of coordinates with an accuracy below the arcsecond scale as it comes from Chandra observations. This is a quick method that is capable of automatically retrieving accurate positional data from Simbad that may not necessarily be available in catalogues, but that was, for instance, derived in Astronomer’s Telegrams. In this particular case, this allowed us to instantly find the Chandra counterpart of IGR J17480–2446 (2CXO J174804.8–244649) with a cone search in the Chandra CSC 2 database (Evans et al. 2019).

This positional cross-match is still prone to false positives, as we have to carefully look within the catalogues on a sufficiently large area so that we do not miss any potential counterparts. This is why we also performed a recursive search within the produced list of counterparts, from the poorest to the most accurate catalogues (XMM-Newton, Chandra, 2MASS, Gaia). We note that for LMXBs closely grouped within globular clusters, this method is sometimes unable to automatically separate different chains of counterparts, especially for hard X-rays for which the astrometric precision is not accurate enough to separate closely grouped LMXBs in clusters. Thus, for LMXBs found in clusters, we manually checked the consistency of their counterparts to ensure each have a unique, precise localisation.

Table 1

Queried catalogues for the counterpart search.

2.4 Contents of the catalogue

The general characteristics of Galactic LMXBs are presented in Table A.1. The full catalogue provides their Simbad identifier (Main ID field from Simbad) and a short list of the most used IDs we found in the literature. To build this list, we queried each known ID from Simbad in ADS and retrieved how many papers used them in their title, abstract, or full text. We ranked them from most popular to least popular, and thus provide identifiers that should reflect the community’s preferred naming convention. In this paper, we list the LMXBs under their most popular identifier, except for a few sources for which no popular ID can be recovered in ADS; in this case, we use their Simbad identifier. The online catalogue provides the full list of identifiers known by Simbad to facilitate queries in LMXBwebcat. The ‘Compact’ column provides information on the nature of the accreting compact object, and ‘Spectype’ refers to the spectral type of the donor star. When available, we list the distance inferred from Gaia EDR3 parallaxes by Bailer-Jones et al. (2021). We also cross-matched our LMXBs with the list of globular clusters from Baumgardt & Vasiliev (2021), which contains information about their distances inferred from various means, including Gaia parallaxes. Hence, in the case of a spatial association with a globular cluster we provide the name of the cluster and the inferred distance in the ‘Other distance’ column. In the text, we only keep the largest error bound for Gaia distances, and values are voluntarily rounded for the sake of readability; the unaltered numbers are available in the electronic versions of the catalogue. When there is no cluster association, the ‘Other distance’ column may also contain distance estimates from a number of other methods, which are available in the given references. Lastly, we indicate when one or several type I X-ray bursts were observed by providing a reference.

In Table A.2, we present the orbital parameters: orbital period, eccentricity, and semi-amplitude of the donor’s radial velocity. We also give details on the mass of each binary component – Mx for the compact object and Mo for the companion star – as well as information on the presence of a pulse period and its time derivative in the case where the compact object is an NS. Again, values are rounded for readability and are available in full in the electronic version of the catalogue.

The electronic version also provides extra information on the counterparts for each binary, namely their numerous identifiers, coordinates, and corresponding astrometric precision. The right ascension and declination are given in J2000, and astrometric uncertainties are the 90% positional errors retrieved from the queried catalogues. The full contents of the LMXB catalogue can be queried on Vizier or viewed and queried from the dedicated website LMXBwebcat10. The latter database will be updated regularly, and new versions of the catalogue will be published on the website; every change will be logged to track the evolution of each version, which will remain available alongside the latest upload.

We advise readers to remain critical of all the parameters we list in this catalogue and to check the references before using them in their own work. To ease the process, we implemented a flag system to quickly inform the reader about the reliability of each listed parameter. The flags appear as numbers in dedicated columns in the catalogue database; for the sake of readability, we use daggers in the text:

  • 0 / (nothing): directly measured parameter. This flag is not displayed in Tables A.1 and A.2 or in LMXBwebcat. This includes companion spectral types inferred through spectroscopy, full orbital solutions derived from radial velocity follow-ups, orbital periods from pulse timing or eclipses, dynamical masses, NSs confirmed by the presence of type I bursts or a spin period, or compact object types identified through the measure of the dynamical mass. This also includes distances of globular clusters hosting LMXBs derived via the Gaia parallaxes of the cluster members.

  • 1 (†): caution. The parameter is either indirectly measured or needs better constraints. This includes tentative orbital periods, rough estimations of spectral types from photometry, compact object masses and distances from spectral fitting, radial-velocity semi-amplitudes from empirical relations, or compact object types identified through comparison of X-ray spectra. It also includes all parameters for which we only have upper or lower limits on a direct measurement (i.e. most eccentricity measurements).

  • 2 (††): warning. The parameter is assumed in the scope of a model and likely needs proper observational constraints. This also includes indirectly derived parameters with lower or upper limits.

For instance, out of the 75 BH LMXBs we list, only 19 are flagged as reliable BH (“0”) since direct evidence of the presence of a BH is hard to obtain, apart from deriving a dynamical mass greater than ~3 M. Most BHs are thus flagged ‘1″” (N = 52), and only a few are flagged ‘2’ (N = 4) since this identification mostly comes from their X-ray spectrum resembling the one of typical BH LMXBs. The presence of an NS is, however, much easier to prove through the observation of type I X-ray bursts or the detection of a spin period; hence, 146 out of 176 NSs in LMXBs are flagged as being reliable. These flags can be used to quickly identify which LMXBs are worth revisiting to give better constraints on their set of parameters.

2.5 Gaia candidate counterparts

The only parameter flag that slightly differs from the others is the one attributed to the Gaia distances in Table A.1. Because LMXBs are generally very faint in the optical and nIR, and because there are so many late-type stars in the field, finding the true optical or nIR counterpart to an LMXB can be challenging even in the case where sub-arcsecond X-ray localisation is available, as interlopers can be present along with the true counterpart within the X-ray error circles. Hence, we propose candidate Gaia counterparts to LMXBs based on astrometric cross-matching as well as historical associations in the few cases where both deep and high-resolution optical or nIR imaging has been performed.

The Gaia distance flag does not refer to the reliability of the distance estimation; instead, it represents how the Gaia counterpart was associated with the LMXB. Gaia counterparts that we found compatible with either an XMM-Newton or Chandra detection (e.g. a sub-arcsecond scale association) and that do not have any other neighbour in the Gaia catalogue closer than 1″ are deemed secure, and as such we do not flag them. Gaia counterparts that were found only based on a Swift detection (e.g. an arcsecond scale association) are flagged as uncertain The Gaia counterparts flagged as “2”/†† are not necessarily unreliable, but they are not based on an association with an accurate soft X-ray detection. Instead, they come from a historical association with an optical counterpart. For instance, Sco X-1 has a Gaia counterpart but no soft X-ray position available in the Swift, Chandra, or XMM catalogues because of its tremendous X-ray brightness.

These Gaia candidate counterparts can be subject to change in further iterations of the database as new X-ray positional constraints or deeper optical and nIR imaging becomes available on LMXBs. There are ways to further determine the level of confidence in the Gaia counterparts we found, such as comparing their optical magnitudes to previously published survey data. Because LMXBs can be highly variable, we chose to perform a check between the distances inferred by Gaia parallax and the distances inferred by other means (‘other distance’, such as spectral energy distribution fitting or photospheric radius expansion in bursting sources). After removing the LMXBs that lie within clusters (since all of their distance information come from Gaia data), in Fig. 1 we plot the Gaia distances versus the other distances from the literature. A linear fitting excluding the data points with lower or upper limits returns a proportional coefficient of 1.03 and a systematic of 50 pc, which is satisfactory since we are comparing two completely independent sets of measurements. We note that this sub-sample is representative of the whole catalogue concerning the Gaia flags: we count four flag-0, a single flag-1, and six flag-2 Gaia counterparts in the fitted sample. This may indicate that our flagging system is a bit too strict, with the caveat of a low number of sources to work with.

3 Results, discussions, and byproducts

3.1 Catalogue statistics and uses

We present a list of 339 Galactic LMXBs and candidates in this new catalogue, as represented in Fig. 2. We note that contrary to the previous catalogue of Liu et al. (2007), we do include quiescent LMXB candidates (qLMXBs hereafter); 25 are present in the current version of our catalogue. Hence, after subtracting these qLMXBs to compare our total sample to Liu et al. (2007), we provide a 67% increase in the total number of LMXBs and candidates in the Milky Way. We have at least a tentative identification of compact object type for more than 250 LMXBs, with a predominance of NSs (70%) compared to BHs (30%). We compiled 150 orbital periods and 69 spin periods, which are, respectively, a 200% and 150% increase compared to the 2007 catalogue, showing the tremendous impact of new detections and follow-up studies on LMXBs. Out of the 176 NS LMXBs, 112 are known to be X-ray bursters.

In Fig. 3, we present the full Corbet diagram of NS XRBs in the Galaxy, compiling the data of the present catalogue for NS LMXBs with both the orbital period and spin period derived (N = 50) alongside the same data for HMXBs available in Fortin et al. (2023b). In this sample, the majority of the NSs in LMXB have spin periods lower than 10 ms (N = 39), a region exclusively dominated by LMXBs contrary to NSs in HMXBs that seldom have spin periods lower than 100 ms. LMXBs and HMXBs are generally well-separated in the Corbet diagram, although some symbiotic LMXBs (where the donor is an evolved, giant star) do overlap with HMXBs as consequence of a larger orbital separation and lower efficiency at transferring angular momentum.

In our previous catalogue dedicated to HMXBs, almost three quarters of the HMXBs were detected by Gaia and were of sufficient astrometric quality to invert the distance from the parallax; in this LMXB catalogue, we note that only about 40% of the sources (140) have a Gaia DR3 counterpart, and only 98 of them have distance information available in Bailer-Jones et al. (2021). This is explained by the fact that optical counterparts of LMXBs are fainter on average, and also because these are older astrophysical objects that had time to migrate out of the Galactic plane towards the bulge of the Milky Way, which is too far away for any source to have a reliable Gaia parallax, even when a counterpart is detected. This still allows us to localise ~30% of our LMXBs within the Galaxy thanks to Gaia as shown in Fig. 4. If we combine to the Gaia distances the ones found in the literature and the distances to globular clusters, we reach the number of 208 LMXBs with a distance estimation. We note that regardless of the method used for distance estimation (parallax, globular cluster association, or X-ray modelling), we advise the users to remain cautious of the determined distance values when considering individual systems as they may be subject to various biases, such as poor parallax quality, wrong association within a globular cluster, foreground star, and so on. When considering the whole sample, these biases should at least partly cancel out, but there are bound to be outliers.

To show the potential of the data we aggregated in this catalogue, we constructed the distribution of X-ray luminosities of the Galactic LMXBs using the 2SXPS Swift database (Evans et al. 2020). We combined the unabsorbed 0.3–10 keV Apec flux (labelled FAU0 in 2SXPS) with either the Gaia distances or, when not available, the ‘Other distance’ determination in the LMXB catalogue. In the case where the LMXBs are associated with globular clusters, we used the distance to the cluster. This luminosity distribution, shown in Fig. 5, is the first step to obtaining an estimation of the total X-ray budget of LMXBs in the Milky Way, and it is only presented here as an example of how this catalogue can be used. To go further, users may want to consider other methods of flux measurements from the 2SXPS catalogue, combine fluxes from other observatories such as XMM-Newton (Webb et al. 2020) or Chandra (Evans et al. 2019), and of course discuss the impact of the behaviour of LMXBs from quiescence to outburst on the average flux values available in the aforementioned catalogues.

thumbnail Fig. 1

Comparison between distances to LMXBs from the literature versus the distances of the proposed Gaia counterparts inferred from their parallax. Only LMXBs that have both information and are not located within a cluster are plotted (N = 16); black arrows indicate lower or upper limits. The dashed black line is the best linear fit, excluding sources with only lower or upper limits (N = 11).

thumbnail Fig. 2

Edge-on view of 339 LMXBs in the Galaxy. Galactic latitudes are indicated in degrees. Background image credits: ESA/Gaia/DPAC.

thumbnail Fig. 3

Corbet diagram of 50 NS LMXBs in the current catalogue alongside the 78 NS HMXBs now available in Fortin et al. (2023b), which have both orbital and spin-period information (all flags included). Symbiotic LMXBs are indicated in green rhombuses.

thumbnail Fig. 4

Face-on view of 98 Galactic LMXBs with Gaia parallaxes. Bars indicate the 68% confidence interval in distance. Background image credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech).

thumbnail Fig. 5

Distribution of soft X-ray luminosities of Galactic LMXBs seen by Swift and with a distance determination (N = 89).

3.2 Byproducts

A noteworthy byproduct of our work is the retrieval of information about INTEGRAL sources marked as unidentified in Bird et al. (2016). We kept five of them as candidate LMXBs, which appear in our catalogue; in Table B.1, we also provide a separate list for the 44 INTEGRAL sources for which we found an identification in the literature that is not present in Simbad. Most are background active galactic nuclei (AGNs) or cataclysmic variables (CVs). The purpose of this table is to provide easily digestible data for the CDS to update references in Simbad.

3.3 Discussion

After the publication of our previous HMXB catalogue and during the writing of this paper, a similar LMXB catalogue was released by Avakyan et al. (2023), where the authors list 349 Galactic LMXBs. We have similar approaches, as the authors also propose to update their database based on community inputs. We did find, however, notable differences: first and foremost, we do not cite previous catalogues as references for the parameters in our catalogue; instead, we look for the original studies cited in Liu et al. (2007) or Ritter & Kolb (2003) and update them when necessary. This results in a compilation of 570 unique references for the parameters we compile in the present catalogue. Secondly, we carefully review any reference provided by Simbad, as we have found many instances where they do not point to the original study deriving the cited parameter. For example, several companion spectral types are given in Yungelson & Lasota (2008), which is a paper discussing evolutionary models for BH LMXBs that happens to list these spectral types (and some other parameters such as orbital periods or mass ratios) coming from already published data. Thirdly, we are slightly more strict concerning the inclusion of LMXB candidates, as we do not list X-ray sources for which there is no particular indication of them being at least candidate LMXBs. For this reason, we did not include the following in our catalogue: AX J1824.5–2451, [BSP2003] 24, Swift J174038.1–273712, CXOGC J174538.0–290022, XMM J174544–2913.0, SWIFT J174553.7–290347, CXOGC J174622.2–290634, Swift J175233.9–290952, and NGC 6752 CX19. Thanks to our minute investigation of each LMXB candidate, we were also able to exclude duplicates where one or several counterparts of the same source were listed as independent LMXBs. This was the case for KS 17410293, IGR J17353–3539, TYC 6824–713–1, [ZGV2011] 9, and 3U 1728–16. Lastly, we provide corrected identifications for some sources that may have been wrongly reported to be LMXBs, such as the HMXB Cir X-1 (Jonker et al. 2007), the cataclysmic variable OGLE BLG-ELL-12042 (Gomez et al. 2021), and some which are less likely to be LMXBs ([PLV2002] CX10 is a candidate CV in Pooley et al. 2002).

It is of prime importance for a catalogue to carefully list references. Firstly, this provides at least some insurance to the users that the data were manually curated as, for now, there are no machine learning algorithms that outperform manual data mining in the literature as we present here. Secondly, we also find that it is important to acknowledge all the observational work done on LMXBs and X-ray binaries in general since, as the current catalogue shows, there are still many missing parameters on X-ray binaries that will only be derived thanks to regular proposals for follow-up observations by teams of astronomers. Lastly, the main motivator for such catalogues is to untangle the huge amount of information spread throughout the literature; citing previous catalogues as a source for data goes against this endeavour of making data more accessible to the community.

4 Conclusion

The continuous endeavour of catching X-ray transients and performing multi-wavelength follow-ups has led to the discovery of many new LMXBs and helped characterise their properties tremendously in these past 16 yr. To bring together all this information, we present a new catalogue of 339 Galactic LMXBs that constitutes a tool for further studies on either individual systems or their whole population. Being hosted on an independent website, LMXBwebcat, this catalogue is also ready to receive updates and corrections based on new publications or input from the community. Compared to the 187 LMXBs listed in Liu et al. (2007), the current number of known Galactic LMXBs has almost doubled, and given the upcoming observational landscape dedicated to high energies and transient sky astronomy (i.e. eROSITA, LSST, or SVOM), these numbers are likely to keep growing further.

It is therefore essential to continue monitoring new discoveries on X-ray binaries so that we are able to better grasp their properties as a population, their role in the Galactic ecology and how, at the endpoint of their evolution, they may become gravitational-wave sources detectable by LISA (Tauris 2018). We would also like to note that optical and nIR follow-ups are still much needed to complete the set of observables (such as spectral types or orbital solutions from radial velocities) available on LMXBs. We hope this catalogue can also be a tool to identify which parameter needs constraints and to facilitate the identification of ideal targets for astronomers to revisit.

Acknowledgements

The authors were supported by the LabEx UnivEarthS: Interface project I10 “Binary rEvolution: from binary evolution towards merging of compact objects”. S.C. is grateful to the CNES (Centre National d’Etudes Spatiales) for the funding of MINE (Multi-wavelength INTEGRAL Network). F.G. is a CONICET researcher and acknowledges support from PIP 0113 and PIBAA 1275 (CONICET). This work made use of NASA’s Astrophysics Data System (ADS) web services, and of the services associated to the Centre de Données Astronomiques de Strasbourg (CDS) Simbad and Vizier. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. Software: Topcat (Taylor 2005), MATPLOTLIB (Hunter 2007), NUMPY (van der Walt et al. 2011), scipy (Virtanen et al. 2020) and PYTHON from python.org

Appendix A Catalogue of Galactic LMXBs

Tables A.1 and A.2 are only available in electronic form as a single table at the CDS. The data can also be browsed and downloaded on LMXBWebcat (https://binary-revolution.github.io/LMXBwebcat).

The relevant references are listed below:

Albayati, A. C., Altamirano, D., Jaisawal, G. K., et al. 2021, MNRAS, 501, 261

Albayati, A. C., Bult, P., Altamirano, D., et al. 2023, MNRAS, 524, 2477

Altamirano, D., Casella, P., Patruno, A., Wijnands, R., & van der Klis, M. 2008a, ApJ, 674, L45

Altamirano, D., Cavecchi, Y., Patruno, A., et al. 2011, ApJ, 727, L18

Altamirano, D., Galloway, D., Chenevez, J., et al. 2008b, The Astronomer’s Telegram,1651, 1

Altamirano, D., Patruno, A., Heinke, C. O., et al. 2010, ApJ, 712, L58

Altamirano, D., Wijnands, R., Heinke, C. O., Sivakoff, G. R., & Pooley, D. 2012, The Astronomer’s Telegram, 4264, 1

Anderson, S. F., Wachter, S., Margon, B., et al. 1994, ApJ, 436, 319

Aoki, T., Dotani, T., Ebisawa, K., et al. 1992, PASJ, 44, 641

Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411

Armas Padilla, M., Degenaar, N., Patruno, A., et al. 2011, MNRAS, 417, 659

Armas Padilla, M., Degenaar, N., & Wijnands, R. 2013, MNRAS, 434, 1586

Armas Padilla, M., Rodríguez-Gil, P., Muñoz-Darias, T., et al. 2022, ApJ, 931, L9

Arnason, R. M., Sivakoff, G. R., Heinke, C. O., Cohn, H. N., & Lugger, P. M. 2015, ApJ, 807, 52

Ashcraft, T. A., Hynes, R. I., & Robinson, E. L. 2012, MNRAS, 424, 620

Augusteijn, T., Kuulkers, E., & van Kerkwijk, M. H. 2001, A&A, 375, 447

Bagińska, P., Różańska, A., Czerny, B., & Janiuk, A. 2021, ApJ, 912, 110

Baglio, M. C., D’Avanzo, P., Campana, S., et al. 2016, A&A, 587, A102

Baglio, M. C., Mainetti, D., D’Avanzo, P., et al. 2014, A&A, 572, A99

Bahramian, A., Britt, C., & Strader, J. 2018a, The Astronomer’s Telegram, 11342, 1

Bahramian, A., Gladstone, J. C., Heinke, C. O., et al. 2014, MNRAS, 441, 640

Bahramian, A., Heinke, C. O., Tudor, V., et al. 2017, MNRAS, 467, 2199

Bahramian, A., Tetarenko, A., Sivakoff, G., et al. 2018b, The Astronomer’s Telegram, 11646, 1

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147

Bailyn, C. D., Orosz, J. A., McClintock, J. E., & Remillard, R. A. 1995, Nature, 378, 157

Bałucińska-Church, M., Church, M. J., & Smale, A. P. 2004, MNRAS, 347, 334

Bandyopadhyay, R. M., Shahbaz, T., Charles, P. A., & Naylor, T. 1999, MNRAS, 306, 417

Barnes, A. D., Casares, J., Cornelisse, R., et al. 2007, MNRAS, 380, 1182

Barret, D. & Grindlay, J. E. 1995, ApJ, 440, 841

Bassa, C. G., Jonker, P. G., Steeghs, D., & Torres, M. A. P. 2009, MNRAS, 399, 2055

Baumgardt, H. & Vasiliev, E. 2021, MNRAS, 505, 5957

Bayless, A. J., Robinson, E. L., Mason, P. A., & Robertson, P. 2011, ApJ, 730, 43

Becker, W., Swartz, D. A., Pavlov, G. G., et al. 2003, ApJ, 594, 798

Beri, A., Sharma, R., Roy, P., et al. 2023, MNRAS, 521, 5904

Bezayiff, N. 2006, PhD thesis, University of California, Santa Cruz

Bhattacharyya, S. 2020, MNRAS, 498, 728

Bhattacharyya, S., Strohmayer, T. E., Markwardt, C. B., & Swank, J. H. 2006, ApJ, 639, L31

Blay, P., Camero, A., Connell, P., et al. 2008, in The 7th INTEGRAL Workshop, 78

Bogdanov, S. & Halpern, J. P. 2015, ApJ, 803, L27

Bogomazov, A. I., Cherepashchuk, A. M., Khruzina, T. S., & Tutukov, A. V. 2022, MNRAS, 514, 5375

Borozdin, K. N. & Trudolyubov, S. P. 2000, ApJ, 533, L131

Bozzo, E., Bahramian, A., Ferrigno, C., et al. 2018, A&A, 613, A22

Bozzo, E., Bazzano, A., Kuulkers, E., et al. 2014, The Astronomer’s Telegram, 5765, 1

Bozzo, E., Ferrigno, C., Kuulkers, E., et al. 2009, The Astronomer’s Telegram, 2198, 1

Bozzo, E., Pjanka, P., Romano, P., et al. 2016, A&A, 589, A42

Bozzo, E., Romano, P., Falanga, M., et al. 2015, A&A, 579, A56

Bozzo, E., Romano, P., Ferrigno, C., et al. 2013, A&A, 556, A30

Brandt, S., Budtz-Jørgensen, C., & Chenevez, J. 2006a, The Astronomer’s Telegram, 778, 1

Brandt, S., Budtz-Jorgensen, C., Chenevez, J., et al. 2006b, The Astronomer’s Telegram, 970, 1

Brandt, S., Budtz-Jørgensen, C., Gotz, D., Hurley, K., & Frontera, F. 2007, The Astronomer’s Telegram, 1054, 1

Brandt, S., Kuulkers, E., Bazzano, A., et al. 2005, The Astronomer’s Telegram, 622, 1

Britt, C. T., Strader, J., Chomiuk, L., et al. 2017, ApJ, 849, 21

Buisson, D. J. K., Altamirano, D., Armas Padilla, M., et al. 2021, MNRAS, 503, 5600

Buisson, D. J. K., Altamirano, D., Bult, P., et al. 2020, MNRAS, 499, 793

Bult, P., Altamirano, D., Arzoumanian, Z., et al. 2022a, ApJ, 935, L32

Bult, P., Altamirano, D., Arzoumanian, Z., et al. 2018, ApJ, 864, 14

Bult, P., Gorgone, N., Younes, G., Kouveliotou, C., & Harrison, F. 2017, The Astronomer’s Telegram, 11067, 1

Bult, P., Mancuso, G. C., Strohmayer, T. E., et al. 2022b, ApJ, 940, 81

Bult, P., Markwardt, C. B., Altamirano, D., et al. 2019, ApJ, 877, 70

Bult, P., Strohmayer, T. E., Malacaria, C., Ng, M., & Wadiasingh, Z. 2021, ApJ, 912, 120

Bult, P. M., Ng, M., Iwakiri, W., et al. 2022c, The Astronomer’s Telegram, 15425, 1

Cadelano, M., Pallanca, C., Ferraro, F. R., et al. 2017, ApJ, 844, 53

Cadolle Bel, M., Prat, L., Rodriguez, J., et al. 2009, A&A, 501, 1

Camilo, F., Reynolds, J. E., Ransom, S. M., et al. 2016, ApJ, 820, 6

Campana, S., Stella, L., Belloni, T., et al. 2002, A&A, 384, 163

Cantat-Gaudin, T. & Anders, F. 2020, A&A, 633, A99

Cao, H.-M., Migliori, G., Giroletti, M., et al. 2022, A&A, 657, A104

Carotenuto, F., Corbel, S., & Tzioumis, A. 2022, MNRAS, 517, L21

Casares, J. 2016, ApJ, 822, 99

Casares, J., Charles, P., & Kuulkers, E. 1998, ApJ, 493, L39

Casares, J. & Charles, P. A. 1994, MNRAS, 271, L5

Casares, J., Charles, P. A., & Marsh, T. R. 1995, MNRAS, 277, L45

Casares, J., Charles, P. A., & Naylor, T. 1992, Nature, 355, 614

Casares, J., Charles, P. A., Naylor, T., & Pavlenko, E. P. 1993, MNRAS, 265, 834

Casares, J., Cornelisse, R., Steeghs, D., et al. 2006, MNRAS, 373, 1235

Casares, J., Dubus, G., Shahbaz, T., Zurita, C., & Charles, P. A. 2002, MNRAS, 329, 29

Casares, J., Gonzalez Hernandez, J. I., Israelian, G., & Rebolo, R. 2010, MNRAS, 401, 2517

Casares, J., Muñoz-Darias, T., Torres, M. A. P., et al. 2022, MNRAS, 516, 2023

Casares, J., Rodriguez-Gil, P., Zurita, C., et al. 2012, The Astronomer’s Telegram, 4347, 1

Casares, J., Yanes-Rizo, I. V., Torres, M. A. P., et al. 2023, MNRAS, 526, 5209

Casares, J., Zurita, C., Shahbaz, T., Charles, P. A., & Fender, R. P. 2004, ApJ, 613, L133

Casella, P., Altamirano, D., Patruno, A., Wijnands, R., & van der Klis, M. 2008, ApJ, 674, L41

Castro-Tirado, A., Gorosabel, J., Walton, N., et al. 1998, IAU Circ., 6931, 1

Chakrabarty, D., Jonker, P. G., & Markwardt, C. B. 2019, The Astronomer’s Telegram, 13247, 1

Chakrabarty, D. & Morgan, E. H. 1998, Nature, 394, 346

Charles, P., Thorstensen, J., & Bowyer, S. 1978, MNRAS, 183, 29P

Chatterjee, D., Debnath, D., Chakrabarti, S. K., Mondal, S., & Jana, A. 2016, ApJ, 827, 88

Chaty, S. 2006, in VI Microquasar Workshop: Microquasars and Beyond, 14.1

Chaty, S. & Bessolaz, N. 2006, A&A, 455, 639

Chaty, S., Fortin, F., & López-Oramas, A. 2020, A&A, 637, A2

Chaty, S., Mignani, R. P., & Israel, G. L. 2006, MNRAS, 365, 1387

Chelovekov, I. V. & Grebenev, S. A. 2007, The Astronomer’s Telegram, 1094, 1

Chelovekov, I. V., Grebenev, S. A., Mereminskiy, I. A., & Prosvetov, A. V. 2017, Astronomy Letters, 43, 781

Chenevez, J., Alizai, K., Lepingwell, V. A., et al. 2018, The Astronomer’s Telegram, 11272, 1

Chenevez, J., Altamirano, D., Galloway, D. K., et al. 2011, MNRAS, 410, 179

Chenevez, J., Falanga, M., Kuulkers, E., et al. 2007, A&A, 469, L27

Chenevez, J., Kuulkers, E., Brandt, S., et al. 2012, The Astronomer’s Telegram, 4050, 1

Cherepashchuk, A. M., Khruzina, T. S., & Bogomazov, A. I. 2021, MNRAS, 508, 1389

Chevalier, C., Ilovaisky, S. A., & Charles, P. A. 1985, A&A, 147, L3

Chirenti, C. & Jasiulek, M. 2018, MNRAS, 476, 354

Chou, Y. & Jhang, Y.-W. 2023, ApJ, 951, 42

Cocchi, M., Bazzano, A., Natalucci, L., et al. 2001, A&A, 378, L37

Cocchi, M., Bazzano, A., Natalucci, L., et al. 2000, A&A, 357, 527

Cocchi, M., Bazzano, A., Natalucci, L., et al. 1999a, A&A, 346, L45

Cocchi, M., Bazzano, A., Natalucci, L., et al. 1998, ApJ, 508, L163

Cocchi, M., Natalucci, L., in’t Zand, J., et al. 1999b, IAU Circ., 7247, 3

Corbet, R. H. D. 2003, ApJ, 595, 1086

Corbet, R. H. D., Thorstensen, J. R., Charles, P. A., et al. 1986, MNRAS, 222, 15P

Cornelisse, R., Casares, J., Charles, P. A., & Steeghs, D. 2013, MNRAS, 432, 1361

Cornelisse, R., D’Avanzo, P., Campana, S., et al. 2012, MNRAS, 420, 3538

Cornelisse, R., Verbunt, F., in’t Zand, J. J. M., Kuulkers, E., & Heise, J. 2002a, A&A, 392, 931

Cornelisse, R., Verbunt, F., in’t Zand, J. J. M., et al. 2002b, A&A, 392, 885

Cornelisse, R., Wijnands, R., & Homan, J. 2007, MNRAS, 380, 1637

Corral-Santana, J. M., Torres, M. A. P., Shahbaz, T., et al. 2018, MNRAS, 475, 1036

Coti Zelati, F., de Ugarte Postigo, A., Russell, T. D., et al. 2021, A&A, 650, A69

Coti Zelati, F., Papitto, A., de Martino, D., et al. 2019, A&A, 622, A211

Courvoisier, T. J. L., Peacock, A., & Pakull, M. 1984, IAU Circ., 3932, 2

Crawford, F., Lyne, A. G., Stairs, I. H., et al. 2013, ApJ, 776, 20

Cui, W., Heindl, W. A., Swank, J. H., et al. 1997, ApJ, 487, L73

D’Avanzo, P., Campana, S., Casares, J., et al. 2009, A&A, 508, 297

Davidsen, A., Malina, R., & Bowyer, S. 1977, ApJ, 211, 866

De, K., Chakrabarty, D., Soria, R., et al. 2022a, ApJ, 928, L8

De, K., Mereminskiy, I., Soria, R., et al. 2022b, ApJ, 935, 36

De Cesare, G., Bazzano, A., Stratta, G., et al. 2006, in ESA Special Publication, Vol. 604, The X-ray Universe 2005, ed. A. Wilson, 259

de Martino, D., Casares, J., Mason, E., et al. 2014, MNRAS, 444, 3004

de Martino, D., Papitto, A., Belloni, T., et al. 2015, MNRAS, 454, 2190

Deeter, J. E., Boynton, P. E., & Pravdo, S. H. 1981, ApJ, 247, 1003

Degenaar, N., Altamirano, D., & Wijnands, R. 2012a, The Astronomer’s Telegram, 4219, 1

Degenaar, N., Jonker, P. G., Torres, M. A. P., et al. 2010, MNRAS, 404, 1591

Degenaar, N., Linares, M., Altamirano, D., & Wijnands, R. 2012b, ApJ, 759, 8

Degenaar, N., Wijnands, R., & Miller, J. M. 2014a, ApJ, 787, 67

Degenaar, N., Wijnands, R., Reynolds, M. T., et al. 2014b, ApJ, 792, 109

Dehiwalage, D. D., Clavel, M., Petrucci, P. O., & Henri, G. 2022, in SF2A-2022: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. Eds.: J. Richard, ed. J. Richard, A. Siebert, E. Lagadec, N. Lagarde, O. Venot, J. Malzac, J. B. Marquette, M. N’Diaye, & B. Briot, 39–42

Del Santo, M., Chenevez, J., Brandt, S., Bazzano, A., & Ubertini, P. 2007, The Astronomer’s Telegram, 1207, 1

Del Santo, M., Sidoli, L., Bazzano, A., et al. 2006, A&A, 456, 1105

Deloye, C. J., Heinke, C. O., Taam, R. E., & Jonker, P. G. 2008, MNRAS, 391, 1619

Deutsch, E. W., Margon, B., & Anderson, S. F. 2000, ApJ, 530, L21

Dieball, A., Knigge, C., Zurek, D. R., et al. 2005, ApJ, 634, L105

Dotani, T., Inoue, H., Murakami, T., Nagase, F., & Tanaka, Y. 1990, Nature, 347, 534

Draghis, P. A., Miller, J. M., Brumback, M. C., et al. 2023, ApJ, 954, 62

Ducci, L., Malacaria, C., Romano, P., et al. 2023, A&A, 674, A100

Echiburú, C. S., Guillot, S., Zhao, Y., et al. 2020, MNRAS, 495, 4508

Elebert, P., Reynolds, M. T., Callanan, P. J., et al. 2009, MNRAS, 395, 884

Engel, M. C., Heinke, C. O., Sivakoff, G. R., Elshamouty, K. G., & Edmonds, P. D. 2012, ApJ, 747, 119

Ferrigno, C., Bozzo, W., Sanna, A., et al. 2018, The Astronomer’s Telegram, 11957, 1

Filippenko, A. V., Leonard, D. C., Matheson, T., et al. 1999, PASP, 111, 969

Filippenko, A. V., Matheson, T., & Ho, L. C. 1995, ApJ, 455, 614

Filippenko, A. V., Matheson, T., Leonard, D. C., Barth, A. J., & van Dyk, S. D. 1997, PASP, 109, 461

Filippova, E., Bozzo, E., & Ferrigno, C. 2014, A&A, 563, A124

Finger, M. H., Koh, D. T., Nelson, R. W., et al. 1996, Nature, 381, 291

Fiocchi, M., Bazzano, A., Natalucci, L., Landi, R., & Ubertini, P. 2011, MNRAS, 414, L41

Focke, W. B., Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, in American Astronomical Society Meeting Abstracts, Vol. 195, American Astronomical Society Meeting Abstracts, 126.02

Fortin, F., Chaty, S., Coleiro, A., Tomsick, J. A., & Nitschelm, C. H. R. 2018, A&A, 618, A150

Fox, D. & Lewin, W. 1998, IAU Circ., 6964, 2

Fox, D. W., Lewin, W. H. G., Rutledge, R. E., et al. 2001, MNRAS, 321, 776

Galloway, D. K., Chakrabarty, D., & Lin, J. R. 2009, The Astronomer’s Telegram, 2094, 1

Galloway, D. K., Chakrabarty, D., Morgan, E. H., & Remillard, R. A. 2002a, ApJ, 576, L137

Galloway, D. K., Chakrabarty, D., Muno, M. P., & Savov, P. 2001, ApJ, 549, L85

Galloway, D. K., in’t Zand, J., Chenevez, J., et al. 2020, ApJS, 249, 32

Galloway, D. K., Markwardt, C. B., Morgan, E. H., Chakrabarty, D., & Strohmayer, T. E. 2005, ApJ, 622, L45

Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJS, 179, 360

Galloway, D. K., Psaltis, D., Chakrabarty, D., & Muno, M. P. 2003, ApJ, 590, 999

Galloway, D. K., Sokoloski, J. L., & Kenyon, S. J. 2002b, ApJ, 580, 1065

Gambino, A. F., Iaria, R., Di Salvo, T., et al. 2016, A&A, 589, A34

Gandolfi, G., Coletta, A., Ricci, D., et al. 1999, IAU Circ., 7174, 1

Gangopadhyay, T., Li, X.-D., Ray, S., Dey, M., & Dey, J. 2012, New A, 17, 43

Garcia, M., Baliunas, S. L., Doxsey, R., et al. 1983, ApJ, 267, 291

Garcia, M. R., Bailyn, C. D., Grindlay, J. E., & Molnar, L. A. 1989, ApJ, 341, L75

Garcia, M. R. & Grindlay, J. E. 1987, ApJ, 313, L59

Gendre, B., Barret, D., & Webb, N. 2003, A&A, 403, L11

Gilfanov, M., Revnivtsev, M., Sunyaev, R., & Churazov, E. 1998, A&A, 338, L83

Gonzalez Hernandez, J. I., Rebolo, R., & Casares, J. 2012, ApJ, 744, L25

Gonzalez Hernandez, J. I., Rebolo, R., Israelian, G., et al. 2008, ApJ, 679, 732

Gonzalez Hernandez, J. I., Rebolo, R., Israelian, G., et al. 2006, ApJ, 644, L49

Goodwin, A. J., Galloway, D. K., in’t Zand, J. J. M., et al. 2019, MNRAS, 486, 4149

Goodwin, A. J. & Woods, T. E. 2020, MNRAS, 495, 796

Gorgone, N. M., Kouveliotou, C., Negoro, H., et al. 2019, ApJ, 884, 168

Gosling, A. J., Bandyopadhyay, R. M., Miller-Jones, J. C. A., & Farrell, S. A. 2007, MNRAS, 380, 1511

Göǧüş¸, E., Finger, M. H., Kouveliotou, C., et al. 2004, ApJ, 609, 977

Grebenev, S. A., Molkov, S. V., Revnivtsev, M. G., & Sunyaev, R. A. 2007, in ESA Special Publication, Vol. 622, The Obscured Universe. Proceedings of the VI INTEGRAL Workshop, 3730376

Greenstein, G. 1972, Nature Physical Science, 238, 71

Greiner, J., Dennerl, K., & Predehl, P. 1996, A&A, 314, L21

Grindlay, J., Gursky, H., Schnopper, H., et al. 1976, ApJ, 205, L127

Guillot, S., Rutledge, R. E., Bildsten, L., et al. 2009, MNRAS, 392, 665

Güver, T. & Özel, F. 2013, ApJ, 765, L1

Hammerstein, E. K., Cackett, E. M., Reynolds, M. T., & Miller, J. M. 2018, MNRAS, 478, 4317

Hare, J., Kargaltsev, O., & Rangelov, B. 2018, ApJ, 865, 33

Harlaftis, E. T., Horne, K., & Filippenko, A. V. 1996, PASP, 108, 762

Hasinger, G. & van der Klis, M. 1989, A&A, 225, 79

Heida, M., Jonker, P. G., Torres, M. A. P., & Chiavassa, A. 2017, ApJ, 846, 132

Heinke, C. O., Bahramian, A., Degenaar, N., & Wijnands, R. 2015, MNRAS, 447, 3034

Heinke, C. O., Grindlay, J. E., & Edmonds, P. D. 2005, ApJ, 622, 556

Heinke, C. O., Grindlay, J. E., Lloyd, D. A., & Edmonds, P. D. 2003, ApJ, 588, 452

Hemphill, P. B., Schulz, N. S., Marshall, H. L., & Chakrabarty, D. 2021, ApJ, 920, 142

Hertz, P. & Wood, K. S. 1988, ApJ, 331, 764

Hertz, P., Wood, K. S., & Cominsky, L. R. 1997, ApJ, 486, 1000

Hinkle, K. H., Fekel, F. C., Joyce, R. R., et al. 2006, ApJ, 641, 479

Hjellming, R. M. & Rupen, M. P. 1995, Nature, 375, 464

Hoffman, J. A., Lewin, W. H. G., & Doty, J. 1977, ApJ, 217, L23

Homan, J., Belloni, T., van der Klis, M., et al. 2006, The Astronomer’s Telegram, 748, 1

Homan, J., Gendreau, K. C., Sanna, A., et al. 2021, The Astronomer’s Telegram, 14606, 1

Homan, J., van den Berg, M., Heinke, C., & Pooley, D. 2022, The Astronomer’s Telegram, 15640, 1

Homan, J. & Wijnands, R. 2003, The Astronomer’s Telegram, 169, 1

Homer, L., Anderson, S. F., Margon, B., Deutsch, E. W., & Downes, R. A. 2001a, ApJ, 550, L155

Homer, L., Charles, P. A., Hakala, P., et al. 2001b, MNRAS, 322, 827

Horne, K., Verbunt, F., & Schneider, D. P. 1986, MNRAS, 218, 63

Hynes, R. I., Schaefer, B. E., Baum, Z. A., et al. 2016, MNRAS, 459, 3596

Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., & O’Brien, K. 2003, ApJ, 583, L95

Iaria, R., D’Aí, A., di Salvo, T., et al. 2009, A&A, 505, 1143

Iaria, R., Di Salvo, T., Matranga, M., et al. 2015, A&A, 577, A63

Iaria, R., Gambino, A. F., Di Salvo, T., et al. 2018, MNRAS, 473, 3490

Ilovaisky, S. A., Auriere, M., Koch-Miramond, L., et al. 1993, A&A, 270, 139

in’t Zand, J. J. M., Verbunt, F., Heise, J., et al. 1998, A&A, 329, L37

in’t Zand, J. J. M., Verbunt, F., Strohmayer, T. E., et al. 1999, A&A, 345, 100

in’t Zand, J., Linares, M., & Markwardt, C. 2014, The Astronomer’s Telegram, 5972, 1

in’t Zand, J., Verbunt, F., Heise, J., et al. 2004, Nuclear Physics B Proceedings Supplements, 132, 486

in’t Zand, J. J. M., Cornelisse, R., & Méndez, M. 2005a, A&A, 440, 287

in’t Zand, J. J. M., Cumming, A., van der Sluys, M. V., Verbunt, F., & Pols, O. R. 2005b, A&A, 441, 675

in’t Zand, J. J. M., Galloway, D. K., Kuulkers, E., & Goodwin, A. 2017, The Astronomer’s Telegram, 10567, 1

in’t Zand, J. J. M., Heise, J., Muller, J. M., et al. 1999, Nuclear Physics B Proceedings Supplements, 69, 228

in’t Zand, J. J. M., Hulleman, F., Markwardt, C. B., et al. 2003, A&A, 406, 233

in’t Zand, J. J. M., Jonker, P. G., Bassa, C. G., Markwardt, C. B., & Levine, A. M. 2009, A&A, 506, 857

in’t Zand, J. J. M., Markwardt, C. B., Bazzano, A., et al. 2002a, A&A, 390, 597

in’t Zand, J. J. M., van Kerkwijk, M. H., Pooley, D., et al. 2001, ApJ, 563, L41

in’t Zand, J. J. M., Verbunt, F., Kuulkers, E., et al. 2002b, A&A, 389, L43

Ioannou, Z., Robinson, E. L., Welsh, W. F., & Haswell, C. A. 2004, AJ, 127, 481

Iwakiri, W. B., Pottschmidt, K., Falkner, S., et al. 2019, ApJ, 878, 121

Iyer, N., Nandi, A., & Mandal, S. 2015, ApJ, 807, 108

Jain, C. & Paul, B. 2011, MNRAS, 413, 2

Jain, C., Paul, B., & Dutta, A. 2010, MNRAS, 409, 755

Jain, C., Paul, B., Joshi, K., Dutta, A., & Raichur, H. 2007, Journal of Astrophysics and Astronomy, 28, 175

Jaisawal, G. K., Naik, S., Gupta, S., Chenevez, J., & Epili, P. 2018, MNRAS, 478, 448

Jonker, P. G., Bassa, C. G., & Wachter, S. 2007a, MNRAS, 377, 1295

Jonker, P. G., Miller-Jones, J., Homan, J., et al. 2010, MNRAS, 401, 1255

Jonker, P. G., Steeghs, D., Chakrabarty, D., & Juett, A. M. 2007b, ApJ, 665, L147

Jonker, P. G., Steeghs, D., Nelemans, G., & van der Klis, M. 2005, MNRAS, 356, 621

Jonker, P. G. & van der Klis, M. 2001, ApJ, 553, L43

Jonker, P. G., van der Klis, M., & Groot, P. J. 2003a, MNRAS, 339, 663

Jonker, P. G., van der Klis, M., Homan, J., et al. 2001, ApJ, 553, 335

Jonker, P. G., van der Klis, M., Kouveliotou, C., et al. 2003b, MNRAS, 346, 684

Juett, A. M. & Chakrabarty, D. 2003, ApJ, 599, 498

Kaaret, P., in’t Zand, J. J. M., Heise, J., & Tomsick, J. A. 2002, ApJ, 575, 1018

Kaaret, P., in’t Zand, J. J. M., Heise, J., & Tomsick, J. A. 2003, ApJ, 598, 481

Kaaret, P., Morgan, E. H., Vanderspek, R., & Tomsick, J. A. 2006, ApJ, 638, 963

Kaaret, P., Prieskorn, Z., in’t Zand, J. J. M., et al. 2007, ApJ, 657, L97

Kalamkar, M., Yang, Y., Altamirano, D., et al. 2010, The Astronomer’s Telegram, 2881, 1

Kaluzny, J., Rozanska, A., Rozyczka, M., Krzeminski, W., & Thompson, I. B. 2012, ApJ, 750, L3

Kaptein, R. G., in’t Zand, J. J. M., Kuulkers, E., et al. 2000, A&A, 358, L71

Karitskaya, E. A. & Bochkarev, N. G. 1987, Astronomicheskij Tsirkulyar, 1477, 1

Kaur, R., Wijnands, R., Kamble, A., et al. 2017, MNRAS, 464, 170

Kaur, R., Wijnands, R., Patruno, A., et al. 2009, MNRAS, 394, 1597

Kennea, J. A. 2018, The Astronomer’s Telegram, 11311, 1

Kennea, J. A., Burrows, D. N., Chester, M., et al. 2005, The Astronomer’s Telegram, 632, 1

Kennea, J. A., Campana, S., Wijnands, R., et al. 2007, The Astronomer’s Telegram, 1209, 1

Kennea, J. A. & Negoro, H. 2019, The Astronomer’s Telegram, 12434, 1

Kennea, J. A., Palmer, D. M., Siegel, M. H., et al. 2020, The Astronomer’s Telegram, 13452, 1

Kennedy, M. R., Breton, R. P., Clark, C. J., et al. 2020, MNRAS, 494, 3912

Kirsch, M. G. F., Mukerjee, K., Breitfellner, M. G., et al. 2004, A&A, 423, L9

Kitamura, Y., Takahashi, H., & Fukazawa, Y. 2014, PASJ, 66, 6

Klein-Wolt, M., Wijnands, R., Swank, J. H., & Markwardt, C. B. 2007, The Astronomer’s Telegram, 1065, 1

Knight, A. H., Ingram, A., & Middleton, M. 2022, MNRAS, 514, 1908

Koo, J. W. C. & Haymes, R. C. 1980, ApJ, 239, L57

Kouveliotou, C., Finger, M. H., Fishman, G. J., et al. 1993, in American Institute of Physics Conference Series, Vol. 280, Compton Gamma-ray Observatory, ed. M. Friedlander, N. Gehrels, & D. J. Macomb, 319–323

Koyama, K., Kunieda, H., Takeuchi, Y., & Tawara, Y. 1991, ApJ, 370, L77

Krimm, H. A., Markwardt, C. B., Deloye, C. J., et al. 2007, ApJ, 668, L147

Krimm, H. A., Tomsick, J. A., Markwardt, C. B., et al. 2011, ApJ, 735, 104

Kuiper, L., Tsygankov, S. S., Falanga, M., et al. 2020, A&A, 641, A37

Kushwaha, A., Jayasurya, K. M., Agrawal, V. K., & Nandi, A. 2023, MNRAS, 524, L15

Kuśmierek, K., Madej, J., & Kuulkers, E. 2011, MNRAS, 415, 3344

Kuulkers, E., Homan, J., van der Klis, M., Lewin, W. H. G., & Méndez, M. 2002, A&A, 382, 947

Kuulkers, E., Kouveliotou, C., van der Horst, A. J., et al. 2011, arXiv e-prints, arXiv:1102.2102

Kuulkers, E. & Levine, A. M. 2006, The Astronomer’s Telegram, 837, 1

Kuulkers, E. & van der Klis, M. 1998, A&A, 332, 845

Lamer, G., Schwope, A. D., Predehl, P., et al. 2021, A&A, 647, A7

Langmeier, A., Sztajno, M., Vacca, W. D., Truemper, J., & Pietsch, W. 1986, in NATO Advanced Study Institute (ASI) Series C, Vol. 167, The Evolution of Galactic X-Ray Binaries, ed. J. Truemper, W. H. G. Lewin, & W. Brinkmann, 253

Leahy, D. A., Morsink, S. M., & Chou, Y. 2011, ApJ, 742, 17

Lewin, W. H. G., Clark, G., & Doty, J. 1976a, IAU Circ., 2922, 1

Lewin, W. H. G., Doty, J., Clark, G. W., et al. 1976b, ApJ, 207, L95

Li, Z., Qu, Z., Chen, L., et al. 2015, ApJ, 798, 56

Li, Z., Yu, W., Lu, Y., Pan, Y., & Falanga, M. 2022, ApJ, 935, 123

Liao, N.-H., Chou, Y., Hsieh, H.-E., & Chuang, P.-S. 2015, Publication of Korean Astronomical Society, 30, 593

Lin, D., Altamirano, D., Homan, J., et al. 2009, ApJ, 699, 60

Lin, J. & Yu, W. 2020, ApJ, 903, 37

Lindstrøm, C., Griffin, J., Kiss, L. L., et al. 2005, MNRAS, 363, 882

López, K. M., Jonker, P. G., Torres, M. A. P., et al. 2019, MNRAS, 482, 2149

Luna, G. J. M. 2023, A&A, 676, L2

Lutovinov, A., Revnivtsev, M., Molkov, S., & Sunyaev, R. 2005, A&A, 430, 997

MacDonald, R. K. D., Bailyn, C. D., Buxton, M., et al. 2014, ApJ, 784, 2

Maeda, Y., Koyama, K., Sakano, M., Takeshima, T., & Yamauchi, S. 1996, PASJ, 48, 417

Majczyna, A., Madej, J., Nalezyty, M., Rózanska, A., & Udalski, A. 2016, in 37th Meeting of the Polish Astronomical Society, ed. A. Rózanska & M. Bejger, Vol. 3, 133–136

Makishima, K., Mitsuda, K., Inoue, H., et al. 1983, ApJ, 267, 310

Mandal, M., Pal, S., Chauhan, J., Lohfink, A., & Bharali, P. 2023, MNRAS, 521, 881

Marino, A., Anitra, A., Mazzola, S. M., et al. 2022, MNRAS, 515, 3838

Markwardt, C., Swank, J., & Smith, E. 2001a, IAU Circ., 7707, 2

Markwardt, C. B., Cummings, J., & Krimm, H. 2008a, The Astronomer’s Telegram, 1616, 1

Markwardt, C. B., Halpern, J. P., Holland, S. T., et al. 2008b, The Astronomer’s Telegram, 1716, 1

Markwardt, C. B., Juda, M., & Swank, J. H. 2003a, IAU Circ., 8095, 2

Markwardt, C. B., Klein-Wolt, M., Swank, J. H., & Wijnands, R. 2007a, The Astronomer’s Telegram, 1069, 1

Markwardt, C. B., Krimm, H. A., & Swank, J. H. 2007b, The Astronomer’s Telegram, 1108, 1

Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 1999, ApJ, 512, L125

Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 2003b, The Astronomer’s Telegram, 164, 1

Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 2008c, The Astronomer’s Telegram, 1443, 1

Markwardt, C. B., Strohmayer, T. E., Swank, J. H., & Zhang, W. 2000, IAU Circ., 7482, 2

Markwardt, C. B., Swank, J. H., Krimm, H. A., Pereira, D., & Strohmayer, T. E. 2009, The Astronomer’s Telegram, 2107, 1

Markwardt, C. B., Swank, J. H., & Strohmayer, T. E. 2001b, in American Astronomical Society Meeting Abstracts, Vol. 199, American Astronomical Society Meeting Abstracts, 27.04

Markwardt, C. B., Swank, J. H., & Strohmayer, T. E. 2004, The Astronomer’s Telegram, 353, 1

Markwardt, C. B., Swank, J. H., Strohmayer, T. E., in’t Zand, J. J. M., & Marshall, F. E. 2002, ApJ, 575, L21

Marsh, T. R., Robinson, E. L., & Wood, J. H. 1994, MNRAS, 266, 137

Marshall, F. E., Ueda, Y., & Markwardt, C. B. 1999, IAU Circ., 7133, 3

Martí, J., Luque-Escamilla, P. L., & Muñoz-Arjonilla, Á. J. 2016, A&A, 596, A46

Marti, J., Mirabel, I. F., Duc, P. A., & Rodriguez, L. F. 1997, A&A, 323, 158

Masetti, N., Bianchini, A., Bonibaker, J., della Valle, M., & Vio, R. 1996, A&A, 314, 123

Masetti, N., Dal Fiume, D., Cusumano, G., et al. 2002, A&A, 382, 104

Masetti, N., Landi, R., Pretorius, M. L., et al. 2007, A&A, 470, 331

Masetti, N., Parisi, P., Jiménez-Bailón, E., et al. 2012, A&A, 538, A123

Mason, K. O., Bell-Burnell, S. J., & White, N. E. 1976, Nature, 262, 474

Mason, K. O., Middleditch, J., Nelson, J. E., et al. 1980, ApJ, 242, L109

Mason, P. A., Robinson, E. L., Gray, C. L., & Hynes, R. I. 2008, ApJ, 685, 428

Mata Sánchez, D., Muñoz-Darias, T., Casares, J., Corral-Santana, J. M., & Shahbaz, T. 2015, MNRAS, 454, 2199

Mata Sanchez, D., Munoz-Darias, T., Casares, J., et al. 2015, MNRAS, 449, L1

Mata Sánchez, D., Rau, A., Álvarez Hernández, A., et al. 2021, MNRAS, 506, 581

Matsuba, E., Dotani, T., Mitsuda, K., et al. 1995, PASJ, 47, 575

McClintock, J. E. & Remillard, R. A. 1986, ApJ, 308, 110

Mereminskiy, I. A., Grebenev, S. A., Krivonos, R. A., Chelovekov, I. V., & Sunyaev, R. A. 2017a, The Astronomer’s Telegram, 10256, 1

Mereminskiy, I. A., Grebenev, S. A., & Sunyaev, R. A. 2017b, Astronomy Letters, 43, 656

Meshcheryakov, A. V., Revnivtsev, M. G., Pavlinsky, M. N., Khamitov, I., & Bikmaev, I. F. 2010, Astronomy Letters, 36, 738

Migliari, S., Di Salvo, T., Belloni, T., et al. 2003, MNRAS, 342, 909

Mignani, R. P., Chaty, S., Mirabel, I. F., & Mereghetti, S. 2002, A&A, 389, L11

Mikhailov, K., van Leeuwen, J., & Jonker, P. G. 2017, ApJ, 840, 9

Mikołajewska, J., Zdziarski, A. A., Ziółkowski, J., Torres, M. A. P., & Casares, J. 2022, ApJ, 930, 9

Miller, J. M., Swihart, S. J., Strader, J., et al. 2020, ApJ, 904, 49

Miller-Jones, J. C. A., Sivakoff, G. R., Rupen, M., & Altamirano, D. 2011, The Astronomer’s Telegram, 3628, 1

Molina, M., Malizia, A., Masetti, N., et al. 2021, MNRAS, 507, 3423

Molla, A. A., Chakrabarti, S. K., Debnath, D., & Mondal, S. 2017, ApJ, 834, 88

Mondal, S. 2020, Advances in Space Research, 65, 693

Mondal, S. & Jithesh, V. 2023, MNRAS, 522, 2065

Morgan, E., Kaaret, P., & Vanderspek, R. 2005a, The Astronomer’s Telegram, 523, 1

Morgan, E., Swank, J., Markwardt, C., & Gehrels, N. 2005b, The Astronomer’s Telegram, 550, 1

Mori, H., Maeda, Y., Pavlov, G. G., Sakano, M., & Tsuboi, Y. 2005, Advances in Space Research, 35, 1137

Morihana, K., Sugizaki, M., Nakahira, S., et al. 2013, PASJ, 65, L10

Motch, C., Pedersen, H., Beuermann, K., Pakull, M. W., & Courvoisier, T. J. L. 1987, ApJ, 313, 792

Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T., & Fender, R. 2014, MNRAS, 437, 2554

Muñoz-Darias, T., de Ugarte Postigo, A., Russell, D. M., et al. 2013, MNRAS, 432, 1133

Muller, J. M., in’t Zand, J., Smith, M. J. S., et al. 1998a, IAU Circ., 6842, 2

Muller, J. M., Smith, M. J. S., D’Andreta, G., et al. 1998b, IAU Circ., 6867, 2

Muno, M. P., Chakrabarty, D., Galloway, D. K., & Savov, P. 2001, ApJ, 553, L157

Munoz-Darias, T., Motta, S., Stiele, H., & Belloni, T. 2011, The Astronomer’s Telegram, 3341, 1

Murakami, T., Inoue, H., Koyama, K., et al. 1983, PASJ, 35, 531

Murdin, P., Allen, D. A., Morton, D. C., Whelan, J. A. J., & Thomas, R. M. 1980, MNRAS, 192, 709

Najar, S., Rangelov, B., & Kargaltsev, O. 2020, in American Astronomical Society Meeting Abstracts, Vol. 235, American Astronomical Society Meeting Abstracts #235, 170.09

Natalucci, L., Bazzano, A., Cocchi, M., et al. 2000a, ApJ, 536, 891

Natalucci, L., Bazzano, A., Cocchi, M., et al. 2000b, ApJ, 543, L73

Natalucci, L., Cornelisse, R., Bazzano, A., et al. 1999, ApJ, 523, L45

Nath, S. K., Debnath, D., Chatterjee, K., et al. 2023, Advances in Space Research, 71, 1045

Nättilä, J., Miller, M. C., Steiner, A. W., et al. 2017, A&A, 608, A31

Negoro, H., Kawase, T., Sugizaki, M., et al. 2017, The Astronomer’s Telegram, 10708, 1

Negoro, H., Shidatsu, M., Mihara, T., et al. 2018, The Astronomer’s Telegram, 11696, 1

Neilsen, J., Steeghs, D., & Vrtilek, S. D. 2008, MNRAS, 384, 849

Nelson, L. A., Rappaport, S. A., & Joss, P. C. 1986, ApJ, 304, 231

Nespoli, E., Fabregat, J., & Mennickent, R. E. 2010, A&A, 516, A94

Ng, M., Bult, P. M., Sanna, A., et al. 2021a, The Astronomer’s Telegram, 14695, 1

Ng, M., Ray, P. S., Bult, P., et al. 2021b, ApJ, 908, L15

Ng, M., Ray, P. S., Strohmayer, T. E., et al. 2020, The Astronomer’s Telegram, 14124, 1

Novarino, M. L., Echeveste, M., Benvenuto, O. G., De Vito, M. A., & Ferrero, G. A. 2021, MNRAS, 508, 3812

Oda, S., Shidatsu, M., Nakahira, S., et al. 2019, PASJ, 71, 108

Onori, F., Fiocchi, M., Masetti, N., et al. 2021, MNRAS, 503, 472

Oosterbroek, T., Orlandini, M., Parmar, A. N., et al. 1999, A&A, 351, L33

Orosz, J. A., Groot, P. J., van der Klis, M., et al. 2002, ApJ, 568, 845

Orosz, J. A., Jain, R. K., Bailyn, C. D., McClintock, J. E., & Remillard, R. A. 1998, ApJ, 499, 375

Orosz, J. A. & Kuulkers, E. 1999, MNRAS, 305, 132

Orosz, J. A., Kuulkers, E., van der Klis, M., et al. 2001, ApJ, 555, 489

Orosz, J. A., McClintock, J. E., Remillard, R. A., & Corbel, S. 2004, ApJ, 616, 376

Özbey Arabaci, M., Kalemci, E., Tomsick, J. A., et al. 2012, ApJ, 761, 4

Özel, F., Gould, A., & Güver, T. 2012, ApJ, 748, 5

Özel, F., Güver, T., & Psaltis, D. 2009, ApJ, 693, 1775

Paduano, A., Bahramian, A., Miller-Jones, J. C. A., et al. 2021, MNRAS, 506, 4107

Pahari, M., Misra, R., Dewangan, G. C., & Pawar, P. 2015, ApJ, 814, 158

Paizis, A., Nowak, M. A., Chaty, S., et al. 2007, ApJ, 657, L109

Paizis, A., Nowak, M. A., Rodriguez, J., et al. 2015, ApJ, 808, 34

Paizis, A., Nowak, M. A., Wilms, J., et al. 2011, ApJ, 738, 183

Pan, H. C., Skinner, G. K., Sunyaev, R. A., & Borozdin, K. N. 1995, MNRAS, 274, L15

Papitto, A., Bozzo, E., Ferrigno, C., et al. 2011a, A&A, 535, L4

Papitto, A., Bozzo, E., Ferrigno, C., et al. 2013a, The Astronomer’s Telegram, 4959, 1

Papitto, A., D’Aì, A., Motta, S., et al. 2011b, A&A, 526, L3

Papitto, A., di Salvo, T., Burderi, L., et al. 2007, MNRAS, 375, 971

Papitto, A., Ferrigno, C., Bozzo, E., et al. 2011c, The Astronomer’s Telegram, 3556, 1

Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013b, Nature, 501, 517

Papitto, A., Riggio, A., di Salvo, T., et al. 2010, MNRAS, 407, 2575

Parikh, A., Wijnands, R., Degenaar, N., & Altamirano, D. 2017, The Astronomer’s Telegram, 10612, 1

Park, S. Q., Miller, J. M., McClintock, J. E., & Murray, S. S. 2005, ApJ, 618, L45

Parmar, A. N., Gottwald, M., Haberl, F., Giommi, P., & White, N. E. 1985a, in Recent Results on Cataclysmic Variables. The Importance of IUE and Exosat Results on Cataclysmic Variables and Low-Mass X-Ray Binaries, ed. W. R. Burke, 119

Parmar, A. N., Stella, L., & White, N. E. 1986, ApJ, 304, 664

Parmar, A. N., White, N. E., Giommi, P., et al. 1985b, IAU Circ., 4058, 2

Patel, S. K., Kouveliotou, C., Tennant, A., et al. 2004, Nuclear Physics B Proceedings Supplements, 132, 542

Patel, S. K., Zurita, J., Del Santo, M., et al. 2007, ApJ, 657, 994

Patruno, A., Haskell, B., & D’Angelo, C. 2012, ApJ, 746, 9

Paul, J., Goldwurm, A., Jourdain, E., et al. 1997, IAU Circ., 6746, 2

Pavlinsky, M. N., Grebenev, S. A., Lutovinov, A. A., Sunyaev, R. A., & Finoguenov, A. V. 2001, Astronomy Letters, 27, 297

Peterson, B. A., Wallace, P., Elliott, K. H., Hill, P. W., & Manchester, R. N. 1980, MNRAS, 190, 33P

Pike, S. N., Harrison, F. A., Tomsick, J. A., et al. 2021, ApJ, 918, 9

Pike, S. N., Negoro, H., Tomsick, J. A., et al. 2022, ApJ, 927, 190

Pintore, F., Sanna, A., Riggio, A., et al. 2014, The Astronomer’s Telegram, 5901, 1

Ponti, G., Bianchi, S., Muñoz-Darias, T., & Nandra, K. 2018, MNRAS, 481, L94

Ponti, G., De, K., Muñoz-Darias, T., Stella, L., & Nandra, K. 2017, MNRAS, 464, 840

Porquet, D., Grosso, N., Bélanger, G., et al. 2005a, A&A, 443, 571

Porquet, D., Grosso, N., Burwitz, V., et al. 2005b, A&A, 430, L9

Priedhorsky, W. 1986, Ap&SS, 126, 89

Prodan, S. & Murray, N. 2015, ApJ, 798, 117

Qiu, H., Zhou, P., Yu, W., Li, X., & Xu, X. 2017, ApJ, 847, 44

Rappaport, S., Nelson, L. A., Ma, C. P., & Joss, P. C. 1987, ApJ, 322, 842

Ratti, E. M., Bassa, C. G., Torres, M. A. P., et al. 2010, MNRAS, 408, 1866

Ratti, E. M., Jonker, P. G., Miller-Jones, J. C. A., et al. 2012a, MNRAS, 423, 2656

Ratti, E. M., Steeghs, D. T. H., Jonker, P. G., et al. 2012b, MNRAS, 420, 75

Ratti, E. M., van Grunsven, T. F. J., Torres, M. A. P., et al. 2013, MNRAS, 431, L10

Ravi, V. 2017, ApJ, 851, 114

Reig, P., Papadakis, I., & Kylafis, N. D. 2003, A&A, 398, 1103

Reis, R. C., Reynolds, M. T., Miller, J. M., et al. 2013, ApJ, 778, 155

Remillard, R., Levine, A. M., Morgan, E. H., Markwardt, C. B., & Swank, J. H. 2006, The Astronomer’s Telegram, 714, 1

Revnivtsev, M. & Sunyaev, R. 2003, A&A, 399, 699

Revnivtsev, M. G., Kniazev, A., Karasev, D. I., Berdnikov, L., & Barway, S. 2013, Astronomy Letters, 39, 523

Reynolds, A. P., Quaintrell, H., Still, M. D., et al. 1997, MNRAS, 288, 43

Rout, S. K., Vadawale, S., Garcia, J., & Connors, R. 2023, ApJ, 944, 68

Roy, J., Bhattacharyya, B., & Ray, P. S. 2014, The Astronomer’s Telegram, 5890, 1

Rupen, M. P., Dhawan, V., & Mioduszewski, A. J. 2002, IAU Circ., 7893, 2

Russell, D. M., Lewis, F., Doran, R., & Roberts, S. 2011, The Astronomer’s Telegram, 3116, 1

Russell, T. D., Del Santo, M., Marino, A., et al. 2022, MNRAS, 513, 6196

Russell, T. D., Miller-Jones, J. C. A., Sivakoff, G. R., Tetarenko, A. J., & JACPOT XRB Collaboration. 2018, The Astronomer’s Telegram, 11356, 1

Russell, T. D., Soria, R., Motch, C., et al. 2014, MNRAS, 439, 1381

Saha, D., Mandal, M., & Pal, S. 2023, MNRAS, 519, 519

Sakano, M., Warwick, R. S., Decourchelle, A., & Wang, Q. D. 2005, MNRAS, 357, 1211

Sanna, A., Bahramian, A., Bozzo, E., et al. 2018, A&A, 610, L2

Sanna, A., Bult, P., Ng, M., et al. 2022, MNRAS, 516, L76

Sanna, A., Papitto, A., Burderi, L., et al. 2017, A&A, 598, A34

Sanna, A., Uttley, P., Altamirano, D., et al. 2019, The Astronomer’s Telegram, 12447, 1

Sasaki, R., Maeda, T., Tsuboi, Y., et al. 2021, in Astronomical Society of the Pacific Conference Series, Vol. 528, New Horizons in Galactic Center Astronomy and Beyond, ed. M. Tsuboi & T. Oka, 391

Schultz, J. 2003, A&A, 397, 249

Seifina, E., Titarchuk, L., & Shaposhnikov, N. 2014, ApJ, 789, 57

Serino, M., Shidatsu, M., Ueda, Y., et al. 2015, PASJ, 67, 30

Shahbaz, T., González-Hernández, J. I., Breton, R. P., et al. 2022, MNRAS, 513, 71

Shahbaz, T., Kuulkers, E., Charles, P. A., et al. 1999, A&A, 344, 101

Shahbaz, T., Russell, D. M., Zurita, C., et al. 2013, MNRAS, 434, 2696

Shahbaz, T., Watson, C. A., & Hernandez-Peralta, H. 2007, MNRAS, 376, 1886

Shaposhnikov, N., Markwardt, C., Swank, J., & Krimm, H. 2010, ApJ, 723, 1817

Shaposhnikov, N., Markwardt, C. B., & Swank, J. H. 2009, The Astronomer’s Telegram, 2269, 1

Shaposhnikov, N., Titarchuk, L., & Haberl, F. 2003, ApJ, 593, L35

Sharma, P., Sharma, R., Jain, C., Dewangan, G. C., & Dutta, A. 2021, Research in Astronomy and Astrophysics, 21, 214

Shaw, A. W., Degenaar, N., Maccarone, T. J., et al. 2024, MNRAS, 527, 7603

Shaw, A. W., Heinke, C. O., Degenaar, N., et al. 2017, MNRAS, 471, 2508

Shaw, A. W., Heinke, C. O., Maccarone, T. J., et al. 2020, MNRAS, 492, 4344

Shi, C.-S. & Zhang, S.-N. 2020, MNRAS, 494, 4382

Shidatsu, M., Kobayashi, K., Negoro, H., et al. 2022, ApJ, 927, 151

Sidoli, L., Paizis, A., Mereghetti, S., Götz, D., & Del Santo, M. 2011, MNRAS, 415, 2373

Skinner, G. K., Foster, A. J., Willmore, A. P., & Eyles, C. J. 1990, MNRAS, 243, 72

Smale, A. P. 1991, PASP, 103, 636

Smale, A. P., Church, M. J., & Bałucinska-Church, M. 2001, ApJ, 550, 962

Smith, D. A., Morgan, E. H., & Bradt, H. 1997, ApJ, 479, L137

Smith, D. M., Heindl, W. A., & Swank, J. H. 2002, ApJ, 578, L129

Smith, D. M., Markwardt, C. B., Swank, J. H., & Negueruela, I. 2012, MNRAS, 422, 2661

Soria, R., Ma, R., Tao, L., & Zhang, S.-N. 2022, MNRAS, 515, 3105

Sridhar, N., Bhattacharyya, S., Chandra, S., & Antia, H. M. 2019, MNRAS, 487, 4221

Staubert, R., Klochkov, D., & Wilms, J. 2009, A&A, 500, 883

Steeghs, D. & Casares, J. 2002, ApJ, 568, 273

Steeghs, D. & Jonker, P. G. 2007, ApJ, 669, L85

Steeghs, D., McClintock, J. E., Parsons, S. G., et al. 2013, ApJ, 768, 185

Steiner, J. F., McClintock, J. E., & Reid, M. J. 2012, ApJ, 745, L7

Stoop, M., van den Eijnden, J., Degenaar, N., et al. 2021, MNRAS, 507, 330

Strader, J., Chomiuk, L., Cheung, C. C., et al. 2015, ApJ, 804, L12

Strader, J., Li, K.-L., Chomiuk, L., et al. 2016, ApJ, 831, 89

Strader, J., Swihart, S. J., Urquhart, R., et al. 2021, ApJ, 917, 69

Strohmayer, T. E., Arzoumanian, Z., Bogdanov, S., et al. 2018a, ApJ, 858, L13

Strohmayer, T. E., Jahoda, K., Giles, A. B., & Lee, U. 1997a, ApJ, 486, 355

Strohmayer, T. E. & Markwardt, C. B. 2010, The Astronomer’s Telegram, 2929, 1

Strohmayer, T. E. & Markwardt, C. B. 2011, The Astronomer’s Telegram, 3121, 1

Strohmayer, T. E., Markwardt, C. B., & Kuulkers, E. 2008, ApJ, 672, L37

Strohmayer, T. E. & Nicer Observatory Science Working Group. 2020, in American Astronomical Society Meeting Abstracts, Vol. 235, American Astronomical Society Meeting Abstracts #235, 159.02

Strohmayer, T. E., Ray, P. S., Gendreau, K. C., et al. 2018b, The Astronomer’s Telegram, 11507, 1

Strohmayer, T. E., Zhang, W., & Swank, J. H. 1997b, ApJ, 487, L77

Suleimanov, V. F., Poutanen, J., Nättilä, J., et al. 2017, MNRAS, 466, 906

Suleimanov, V. F., Poutanen, J., & Werner, K. 2020, A&A, 639, A33

Sunyaev, R. 1990, IAU Circ., 5104, 1

Sunyaev, R., Gilfanov, M., Churazov, E., et al. 1991, Pisma v Astronomicheskii Zhurnal, 17, 116

Sunyaev, R. & Kwant Team. 1989, IAU Circ., 4839, 1

Suzuki, K., Fukushima, K., Negoro, H., et al. 2015, The Astronomer’s Telegram, 7233, 1

Suzuki, M. & HETE Collaboration. 2005, in American Astronomical Society Meeting Abstracts, Vol. 207, American Astronomical Society Meeting Abstracts, 32.04

Swank, J. H., Becker, R. H., Pravdo, S. H., & Serlemitsos, P. J. 1976, IAU Circ., 2963, 1

Swank, J. H., Strohmayer, T. E., & Markwardt, C. B. 2003, in American Astronomical Society Meeting Abstracts, Vol. 203, American Astronomical Society Meeting Abstracts, 125.01

Sztajno, M., Fujimoto, M. Y., van Paradijs, J., et al. 1987, MNRAS, 226, 39

Sztajno, M., Langmeier, A., Frank, J., et al. 1985, IAU Circ., 4111, 1

Tananbaum, H., Gursky, H., Kellogg, E. M., et al. 1972, ApJ, 174, L143

Tetarenko, B. E., Sivakoff, G. R., Heinke, C. O., & Gladstone, J. C. 2016, ApJS, 222, 15

Thomas, N. T., Gudennavar, S. B., & Bubbly, S. G. 2023, MNRAS, 521, 433

Thorstensen, J., Charles, P., Bowyer, S., et al. 1979, ApJ, 233, L57

Thorstensen, J. R. & Armstrong, E. 2005, AJ, 130, 759

Titarchuk, L. & Seifina, E. 2023, A&A, 669, A57

Tomsick, J. A., Garcia, J., Fabian, A., et al. 2019, The Astronomer’s Telegram, 13270, 1

Tomsick, J. A., Halpern, J. P., Kemp, J., & Kaaret, P. 1999, ApJ, 521, 341

Tomsick, J. A., Heindl, W. A., Chakrabarty, D., & Kaaret, P. 2002, ApJ, 581, 570

Torrejón, J. M., Negueruela, I., Smith, D. M., & Harrison, T. E. 2010, A&A, 510, A61

Torres, M. A. P., Casares, J., Jiménez-Ibarra, F., et al. 2020, ApJ, 893, L37

Torres, M. A. P., Casares, J., Jiménez-Ibarra, F., et al. 2019a, ApJ, 882, L21

Torres, M. A. P., Casares, J., Martínez-Pais, I. G., & Charles, P. A. 2002, MNRAS, 334, 233

Torres, M. A. P., Jonker, P. G., Britt, C. T., et al. 2014, MNRAS, 440, 365

Torres, M. A. P., Jonker, P. G., Casares, J., Miller-Jones, J. C. A., & Steeghs, D. 2021, MNRAS, 501, 2174

Torres, M. A. P., Jonker, P. G., Miller-Jones, J. C. A., et al. 2015, MNRAS, 450, 4292

Torres, M. A. P., Jonker, P. G., Steeghs, D., et al. 2008, ApJ, 672, 1079

Torres, M. A. P., McClintock, J. E., Garcia, M. R., & Murray, S. S. 2004, The Astronomer’s Telegram, 233, 1

Torres, M. A. P., Repetto, S., Wevers, T., et al. 2019b, MNRAS, 487, 2296

Tse, K., Chou, Y., & Hsieh, H.-E. 2020, ApJ, 899, 120

Tucker, M. A., Shappee, B. J., Holoien, T. W. S., et al. 2018, ApJ, 867, L9

Ubertini, P., Bazzano, A., Cocchi, M., et al. 1999, ApJ, 514, L27

Uemura, M., Kato, T., Matsumoto, K., et al. 2000, PASJ, 52, L15

Urquhart, R., Bahramian, A., Strader, J., et al. 2020, ApJ, 904, 147

van den Berg, M. & Homan, J. 2017, ApJ, 834, 71

van den Berg, M., Homan, J., Fridriksson, J. K., & Linares, M. 2014, ApJ, 793, 128

van der Klis, M., Kitamoto, S., Tsunemi, H., & Miyamoto, S. 1991, MNRAS, 248, 751

van der Klis, M., Parmar, A., van Paradijs, J., et al. 1985, IAU Circ., 4044, 1

van Grunsven, T. F. J., Jonker, P. G., Verbunt, F. W. M., & Robinson, E. L. 2017, MNRAS, 472, 1907

van Paradijs, J., Penninx, W., Lewin, W. H. G., Sztajno, M., & Truemper, J. 1988, A&A, 192, 147

van Paradijs, J., van der Klis, M., van Amerongen, S., et al. 1990, A&A, 234, 181

Vargas, M., Goldwurm, A., Denis, M., et al. 1996, A&AS, 120, 291

Vincentelli, F. M., Cavecchi, Y., Casella, P., et al. 2020, MNRAS, 495, L37

Wachter, S. 1997, ApJ, 490, 401

Wachter, S., Hoard, D. W., Bailyn, C. D., Corbel, S., & Kaaret, P. 2002, ApJ, 568, 901

Wagner, R. M., Kreidl, T. J., Howell, S. B., & Starrfield, S. G. 1992, ApJ, 401, L97

Walter, R., Lubinski, P., Paltani, S., et al. 2007, A&A, 461, L17

Wang, L., Steeghs, D., Casares, J., et al. 2017, MNRAS, 466, 2261

Wang, S., Kawai, N., Shidatsu, M., et al. 2022, MNRAS, 514, 5320

Wang, S., Kawai, N., Shidatsu, M., et al. 2018, PASJ, 70, 67

Wang, Z. & Chakrabarty, D. 2004, ApJ, 616, L139

Watson, M. G. & Ricketts, M. J. 1978, MNRAS, 183, 35P

Webb, N. A., Naylor, T., Ioannou, Z., Charles, P. A., & Shahbaz, T. 2000, MNRAS, 317, 528

Welsh, W. F., Robinson, E. L., & Young, P. 2000, AJ, 120, 943

Weng, S.-S., Zhang, S.-N., Yi, S.-X., Rong, Y., & Gao, X.-D. 2015, MNRAS, 450, 2915

Werner, N., in’t Zand, J. J. M., Natalucci, L., et al. 2004, A&A, 416, 311

Wetuski, J., Hynes, R. I., Maccarone, T. J., et al. 2021, MNRAS, 506, 5619

White, N. E., Parmar, A. N., Sztajno, M., et al. 1984, ApJ, 283, L9

Wijnands, R., Homan, J., van der Klis, M., et al. 1997, ApJ, 490, L157

Wijnands, R., Méndez, M., van der Klis, M., et al. 1998, ApJ, 504, L35

Wijnands, R., Rol, E., Cackett, E., Starling, R. L. C., & Remillard, R. A. 2009, MNRAS, 393, 126

Wijnands, R., Strohmayer, T., & Franco, L. M. 2001, ApJ, 549, L71

Wijnands, R., Yang, Y. J., & Altamirano, D. 2012, MNRAS, 422, L91

Williams, D. R. A., Motta, S. E., Fender, R., et al. 2022, MNRAS, 517, 2801

Wilson, R. B., Zhang, S. N., Scott, M., et al. 1995, IAU Circ., 6207, 3

Wu, J., Jonker, P. G., Torres, M. A. P., et al. 2015a, MNRAS, 448, 1900

Wu, J., Orosz, J. A., McClintock, J. E., et al. 2016, ApJ, 825, 46

Wu, J., Orosz, J. A., McClintock, J. E., et al. 2015b, ApJ, 806, 92

Xu, Y., Harrison, F. A., Tomsick, J. A., et al. 2020, ApJ, 893, 30

Yadlapalli, N., Ravi, V., Yao, Y., Kulkarni, S. R., & Brisken, W. 2021, ApJ, 909, L27

Yanes-Rizo, I. V., Torres, M. A. P., Casares, J., et al. 2024, MNRAS, 527, 5949

Yanes-Rizo, I. V., Torres, M. A. P., Casares, J., et al. 2022, MNRAS, 517, 1476

Yao, Y., Kulkarni, S. R., Burdge, K. B., et al. 2021a, ApJ, 920, 120

Yao, Y., Kulkarni, S. R., Gendreau, K. C., et al. 2021b, ApJ, 920, 121

Yoshii, T., Kawai, N., Yatsu, Y., et al. 2016, in 41st COSPAR Scientific Assembly, Vol. 41, E1.16–24–16

Zdziarski, A. A., Ziółkowski, J., Bozzo, E., & Pjanka, P. 2016, A&A, 595, A52

Zhang, S. N., Harmon, B. A., Wilson, C. A., et al. 1994, IAU Circ., 6096, 1

Zhang, W., Swank, J. H., White, N. E., & Lapidus, I. 1997, in American Astronomical Society Meeting Abstracts, Vol. 190, American Astronomical Society Meeting Abstracts #190, 36.03

Zhong, J. & Wang, Z. 2011, ApJ, 729, 8

Zurita, C., Durant, M., Torres, M. A. P., et al. 2008, ApJ, 681, 1458

Appendix B INTEGRAL sources

Table B.1

Unidentified INTEGRAL sources from Bird et al. (2016) with available identification in the literature.

References

  1. Abdollahi, S., Acero, F., Baldini, L., et al. 2022, ApJS, 260, 53 [NASA ADS] [CrossRef] [Google Scholar]
  2. Amaro-Seoane, P., Andrews, J., Arca Sedda, M., et al. 2023, Living Rev. Relativity, 26, 2 [NASA ADS] [CrossRef] [Google Scholar]
  3. Armas Padilla, M., Corral-Santana, J. M., Borghese, A., et al. 2023, A&A 677, A186 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Asai, K., Mihara, T., & Matsuoka, M. 2022, PASJ, 74, 974 [NASA ADS] [CrossRef] [Google Scholar]
  5. Avakyan, A., Neumann, M., Zainab, A., et al. 2023, A&A, 675, A199 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147 [Google Scholar]
  7. Baumgardt, H., & Vasiliev, E. 2021, MNRAS, 505, 5957 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bird, A. J., Bazzano, A., Malizia, A., et al. 2016, ApJS, 223, 15 [Google Scholar]
  9. Bozzo, E., Pavan, L., Ferrigno, C., et al. 2012, A&A, 544, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Bradt, H. V. D., & McClintock, J. E. 1983, ARA&A, 21, 13 [NASA ADS] [CrossRef] [Google Scholar]
  11. Capitanio, F., Bird, A. J., Fiocchi, M., Scaringi, S., & Ubertini, P. 2011, ApJS, 195, 9 [NASA ADS] [CrossRef] [Google Scholar]
  12. Chaty, S. 2022, Accreting Binaries; Nature, Formation, and Evolution (IOP Publishing) [CrossRef] [Google Scholar]
  13. Clavel, M., Tomsick, J. A., Bodaghee, A., et al. 2016, MNRAS, 461, 304 [NASA ADS] [CrossRef] [Google Scholar]
  14. Corbet, R. H. D., Chomiuk, L., Coe, M. J., et al. 2019, ApJ, 884, 93 [Google Scholar]
  15. Corral-Santana, J. M., Casares, J., Munoz-Darias, T., et al. 2016, A&A, 587, A61 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Cowperthwaite, P. S., Massaro, F., D’Abrusco, R., et al. 2013, AJ, 146, 110 [NASA ADS] [CrossRef] [Google Scholar]
  17. Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog: II/246 [Google Scholar]
  18. Evans, I. N., Primini, F. A., Glotfelty, C. S., et al. 2019, VizieR Online Data Catalog: IX/57 [Google Scholar]
  19. Evans, P. A., Page, K. L., Osborne, J. P., et al. 2020, ApJS, 247, 54 [Google Scholar]
  20. Fiocchi, M., Bassani, L., Bazzano, A., et al. 2010, ApJ, 720, 987 [NASA ADS] [CrossRef] [Google Scholar]
  21. Forman, W., Jones, C., Cominsky, L., et al. 1978, ApJS, 38, 357 [Google Scholar]
  22. Fortin, F., Chaty, S., Coleiro, A., Tomsick, J. A., & Nitschelm, C. H. R. 2018, A&A, 618, A150 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Fortin, F., Chaty, S., & Tomsick, J. 2023a, ATel, 16099, 1 [NASA ADS] [Google Scholar]
  24. Fortin, F., García, F., Simaz Bunzel, A., & Chaty, S. 2023b, A&A, 671, A149 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. Foschini, L. 2002, Understanding the nature of the unidentified EGRET source 3EG J1631-4033, Chandra Proposal ID 04508160 [Google Scholar]
  26. Gaia Collaboration 2022, VizieR Online Data Catalog: I/355 [Google Scholar]
  27. Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJS, 179, 360 [NASA ADS] [CrossRef] [Google Scholar]
  28. Galloway, D. K., in’t Zand, J., Chenevez, J., et al. 2020, ApJS, 249, 32 [NASA ADS] [CrossRef] [Google Scholar]
  29. Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, Phys. Rev. Lett., 9, 439 [NASA ADS] [CrossRef] [Google Scholar]
  30. Gomez, S., Torres, M. A. P., Jonker, P. G., et al. 2021, MNRAS, 502, 48 [NASA ADS] [CrossRef] [Google Scholar]
  31. Harris, D. E., Forman, W., Gioia, I. M., et al. 1990, Einstein Observatory Catalog of IPC X-ray Sources, 2 [Google Scholar]
  32. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  33. Jonker, P. G., Nelemans, G., & Bassa, C. G. 2007, MNRAS, 374, 999 [Google Scholar]
  34. Landi, R., Bassani, L., Malizia, A., et al. 2010a, MNRAS, 403, 945 [NASA ADS] [CrossRef] [Google Scholar]
  35. Landi, R., Bassani, L., Bazzano, A., et al. 2017a, MNRAS, 470, 1107 [CrossRef] [Google Scholar]
  36. Landi, R., Malizia, A., Bassani, L., et al. 2017b, ATel, 10467, 1 [NASA ADS] [Google Scholar]
  37. Landi, R., Masetti, N., Bazzano, A., et al. 2010b, ATel, 3065, 1 [NASA ADS] [Google Scholar]
  38. Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2001, A&A, 368, 1021 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2007, A&A, 469, 807 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Maiorano, E., Landi, R., Stephen, J. B., et al. 2011, MNRAS, 416, 531 [NASA ADS] [Google Scholar]
  41. Malizia, A., Landi, R., Molina, M., et al. 2016, MNRAS, 460, 19 [NASA ADS] [CrossRef] [Google Scholar]
  42. Malizia, A., Landi, R., Bassani, L., et al. 2017, ATel, 10468, 1 [NASA ADS] [Google Scholar]
  43. Masetti, N., Parisi, P., Jiménez-Bailon, E., et al. 2012, A&A, 538, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  44. Masetti, N., Malizia, A., Landi, R., et al. 2017, ATel, 10447, 1 [NASA ADS] [Google Scholar]
  45. Molina, M., Landi, R., Bassani, L., et al. 2012, A&A, 548, A32 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  46. Onori, F., Fiocchi, M., Masetti, N., et al. 2021, MNRAS, 503, 472 [NASA ADS] [CrossRef] [Google Scholar]
  47. Özbey Arabaci, M., Kalemci, E., Tomsick, J. A., et al. 2012, ApJ, 761, 4 [CrossRef] [Google Scholar]
  48. Paliya, V. S., Koss, M., Trakhtenbrot, B., et al. 2019, ApJ, 881, 154 [NASA ADS] [CrossRef] [Google Scholar]
  49. Pooley, D., Lewin, W. H. G., Verbunt, F., et al. 2002, ApJ, 573, 184 [NASA ADS] [CrossRef] [Google Scholar]
  50. Ritter, H., & Kolb, U. 2003, A&A, 404, 301 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Ritter, H., & Kolb, U. 2011, VizieR Online Data Catalog: B/cb [Google Scholar]
  52. Sguera, V., Sidoli, L., Bird, A. J., Paizis, A., & Bazzano, A. 2020, MNRAS, 491, 4543 [NASA ADS] [CrossRef] [Google Scholar]
  53. Tauris, T. M. 2018, Phys. Rev. Lett., 121, 131105 [NASA ADS] [CrossRef] [Google Scholar]
  54. Tauris, T. M., & van den Heuvel, E. P. J. 2023, Physics of Binary Star Evolution. From Stars to X-ray Binaries and Gravitational Wave Sources (Princeton University Press) [Google Scholar]
  55. Taylor, M. B. 2005, ASP Conf. Ser., 347, 29 [Google Scholar]
  56. Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2009, ApJ, 701, 811 [NASA ADS] [CrossRef] [Google Scholar]
  57. Tomsick, J. A., Bodaghee, A., Chaty, S., et al. 2012, ApJ, 754, 145 [NASA ADS] [CrossRef] [Google Scholar]
  58. Tomsick, J. A., Bodaghee, A., Chaty, S., et al. 2020, ApJ, 889, 53 [NASA ADS] [CrossRef] [Google Scholar]
  59. Ursini, F., Bassani, L., Malizia, A., et al. 2019, ATel, 12840, 1 [NASA ADS] [Google Scholar]
  60. van der Walt, S., Colbert, C., & Varoquaux, G. 2011, CSE, 13 [Google Scholar]
  61. van Paradijs, J. 1983, in Accretion-Driven Stellar X-ray Sources, eds. W. H. G. Lewin, & E. P. J. van den Heuvel, 192 [Google Scholar]
  62. van Paradijs, J. 1995, in X-ray Binaries, 536 [Google Scholar]
  63. Vasiliev, E., & Baumgardt, H. 2021, MNRAS, 505, 5978 [NASA ADS] [CrossRef] [Google Scholar]
  64. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261 [CrossRef] [Google Scholar]
  65. Warwick, R. S., Marshall, N., Fraser, G. W., et al. 1981, MNRAS, 197, 865 [NASA ADS] [CrossRef] [Google Scholar]
  66. Webb, N. A., Coriat, M., Traulsen, I., et al. 2020, A&A, 641, A136 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. White, N. E., Giommi, P., & Angelini, L. 2000, VizieR Online Data Catalog: IX/31 [Google Scholar]
  68. Wood, K. S., Meekins, J. F., Yentis, D. J., et al. 1984, ApJS, 56, 507 [Google Scholar]
  69. Yungelson, L., & Lasota, J. P. 2008, New Astron. Rev., 51, 860 [CrossRef] [Google Scholar]
  70. Zhang, S., Chen, Y. P., Wang, J. M., Li, T. P., & Ge, J. Q. 2009, A&A, 497, 347 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

3

INTernational Gamma-Ray Astrophysics Laboratory.

4

X-ray Multi-Mirror Mission.

5

Monitor of All-sky X-ray Image.

6

Large Synoptic Survey Telescope.

7

Space Variable Objects Monitor.

8

Laser Interferometer Space Antenna.

All Tables

Table 1

Queried catalogues for the counterpart search.

Table B.1

Unidentified INTEGRAL sources from Bird et al. (2016) with available identification in the literature.

All Figures

thumbnail Fig. 1

Comparison between distances to LMXBs from the literature versus the distances of the proposed Gaia counterparts inferred from their parallax. Only LMXBs that have both information and are not located within a cluster are plotted (N = 16); black arrows indicate lower or upper limits. The dashed black line is the best linear fit, excluding sources with only lower or upper limits (N = 11).

In the text
thumbnail Fig. 2

Edge-on view of 339 LMXBs in the Galaxy. Galactic latitudes are indicated in degrees. Background image credits: ESA/Gaia/DPAC.

In the text
thumbnail Fig. 3

Corbet diagram of 50 NS LMXBs in the current catalogue alongside the 78 NS HMXBs now available in Fortin et al. (2023b), which have both orbital and spin-period information (all flags included). Symbiotic LMXBs are indicated in green rhombuses.

In the text
thumbnail Fig. 4

Face-on view of 98 Galactic LMXBs with Gaia parallaxes. Bars indicate the 68% confidence interval in distance. Background image credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech).

In the text
thumbnail Fig. 5

Distribution of soft X-ray luminosities of Galactic LMXBs seen by Swift and with a distance determination (N = 89).

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.