Free Access

Table A.1

List of transitions and observed line properties detected towards L1489-IRS

Species Transition a ν a HPBW Eup a 2 a rms b δV b Tpeak b Vpeak b FWHM b Iint b Database
(MHz) (′′) (K) (D2) (mK) (km s−1) (K) (km s−1) (km s−1) (K km s−1)
CO COng 2 – 1 230538.0 11 17 0.02 11 0.25 - - - ≥53 CDMS
13CO COng 2 – 1 220398.7 11 16 0.05 11 0.25 4.37 (0.37) +7.19 (0.01) 2.7 (0.1) 9.25 (0.01) CDMS
C18O 2 – 1 219560.3 11 16 0.02 12 0.27 1.35 (0.07) +7.32 (0.01) 2.2 (0.1) 3.09 (0.01) CDMS
C15N h1 2 – 1, J=5/2-3/2, 219934.8 11 16 6 8 0.27 0.03 (0.01) +7.88 (0.11) 1.3 (0.3) 0.04 (0.01) CDMS
F=3-2
SO 55 – 44 215220.6 11 44 12 13 0.27 0.12 (0.02) +7.38 (0.11) 3.0 (0.2) 0.12 (0.15) CDMS
SO 65 – 54 219949.4 11 35 14 9 0.27 0.14 (0.02) +7.45 (0.03) 2.9 (0.1) 0.52 (0.01) CDMS
CCD h2 3 – 2, J=7/2-5/2, 216372.8 11 21 3 10 0.27 0.04 (0.01) +7.24 (0.14) 1.2 (0.2) 0.06 (0.01) CDMS
F=9/2-7/2
DCN h3 3 – 2, F=4-3 217238.3 11 21 35 10 0.27 0.05 (0.01) +7.78 (0.13) 1.9 (0.5) 0.11 (0.06) CDMS
DCO+ 3 – 2 216112.6 11 21 142 22 0.27 0.17 (0.05) +7.24 (0.05) 1.1 (0.1) 0.21 (0.01) CDMS
o-D2CO 40,4 – 30,3 231410.3 11 28 43 12 0.25 0.03 (0.01) +7.25 (0.18) 1.4 (0.5) 0.01 (0.01) JPL
p-H2CO 30,3 – 20,2 218222.1 11 21 16 15 0.27 0.30 (0.03) +7.41 (0.03) 3.0 (0.1) 0.98 (0.02) CDMS
p-H2CO 32,2 – 22,1 218475.6 11 68 9 15 0.27 0.06 (0.01) +8.23 (0.14) 1.2 (0.3) 0.06 (0.01) CDMS
p-H2CO 32,1 – 22,0 218760.0 11 68 9 10 0.27 0.03 (0.01) +7.10 (0.28) 3.2 (0.5) 0.03 (0.01) CDMS
o-c-C3H2 33,0 – 22,1 216278.8 11 19 46 12 0.27 0.10 (0.02) +7.37 (0.06) 1.6 (0.4) 0.17 (0.01) CDMS
o-c-C3H2 61,6 – 50,5 217822.1 11 39 175 12 0.27 0.10 (0.02) +7.37 (0.06) 1.6 (0.4) 0.22 (0.01) CDMS
o-c-C3H2 51,4 – 42,3 217940.0 11 35 110 15 0.27 0.08 (0.01) +7.41 (0.07) 1.3 (0.2) 0.11 (0.01) CDMS
p-c-C3H2 52,4 – 41,3 218160.5 11 35 37 9 0.27 0.04 (0.01) +7.62 (0.12) 1.2 (0.2) 0.05 (0.01) CDMS

a Frequencies and spectroscopic parameters are from the Jet Propulsion Laboratory (JPL) molecular database (Pickett et al. 1998) and the Cologne Database for Molecular Spectroscopy (Müller et al. 2005).

b Gaussian fit.

COng Non-Gaussian profile. The line intensity is obtained by integrating the zero power full width (ZPFW) range. In particular −5, +20 km s−1 for CO (2 – 1) (see Figure A.5). The value has to be considered a lower limit given the presence of absorption features.

ng Non-Gaussian profile. The line intensity is obtained by integrating the ZPFW range.

h1 The detected 2 – 1, J=5/2–3/2, F=3–2 line consists of two hyperfine components with 2 ≤ 6 D2 (Müller et al. 2005) in a 0.8 MHz frequency interval. The line with the highest 2 line is reported (see, e.g., Figures A.1).

h2 The detected 3 – 2, J=7/2–5/2, F=9/2–7/2 line consists of three hyperfine components with 2 ≤ 3 D2 (Müller et al. 2005) in a 0.5 MHz frequency interval. The line with the highest 2 line is reported (see, e.g., Figures A.1).

h3 The detected 3 – 2, F=4–3 line consists of three hyperfine components with 2 ≤ 35 D2 (Müller et al. 2005) in a 0.3 MHz frequency interval. The line with the highest 2 line is reported (see, e.g., Figures A.1).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.