Free Access

Table B.1.

Metrics for the main training (first iteration).

Classifier F1 Precision Recall PR AUC bACC
Dummy classifier 0.12 0.12 0.12 0.20 0.50

Logistic regression:

Non-balanced normal 0.61 ± 0.06 0.75 ± 0.09 0.52 ± 0.07 0.65 ± 0.08 0.75 ± 0.04
Class-balanced normal 0.60 ± 0.05 0.49 ± 0.06 0.78 ± 0.07 0.66 ± 0.07 0.83 ± 0.03
Non-balanced fuzzy error 0.61 ± 0.05 0.75 ± 0.07 0.52 ± 0.07 0.66 ± 0.07 0.75 ± 0.03
Class-balanced fuzzy error 0.59 ± 0.05 0.48 ± 0.06 0.78 ± 0.07 0.64 ± 0.08 0.83 ± 0.03
Non-balanced fuzzy distance 0.64 ± 0.05 0.72 ± 0.07 0.57 ± 0.06 0.65 ± 0.07 0.77 ± 0.03
Class-balanced fuzzy distance 0.60 ± 0.06 0.49 ± 0.06 0.78 ± 0.07 0.65 ± 0.08 0.83 ± 0.03

SVM:

Non-balanced normal 0.65 ± 0.06 0.75 ± 0.06 0.58 ± 0.08 0.61 ± 0.08 0.77 ± 0.04
Class-balanced normal 0.67 ± 0.05 0.63 ± 0.07 0.73 ± 0.06 0.65 ± 0.07 0.83 ± 0.03
Non-balanced fuzzy error 0.63 ± 0.06 0.74 ± 0.07 0.56 ± 0.08 0.61 ± 0.08 0.76 ± 0.04
Class-balanced fuzzy error 0.68 ± 0.05 0.64 ± 0.06 0.74 ± 0.07 0.65 ± 0.08 0.84 ± 0.03
Non-balanced fuzzy distance 0.67 ± 0.05 0.75 ± 0.07 0.60 ± 0.07 0.62 ± 0.08 0.79 ± 0.03
Class-balanced fuzzy distance 0.66 ± 0.05 0.60 ± 0.06 0.73 ± 0.05 0.64 ± 0.07 0.83 ± 0.03

Random forest:

Non-balanced normal 0.66 ± 0.06 0.72 ± 0.08 0.61 ± 0.07 0.65 ± 0.09 0.79 ± 0.03
Class-balanced normal 0.64 ± 0.06 0.74 ± 0.07 0.57 ± 0.08 0.65 ± 0.08 0.77 ± 0.04
Non-balanced fuzzy error 0.66 ± 0.05 0.72 ± 0.06 0.62 ± 0.07 0.65 ± 0.07 0.79 ± 0.03
Class-balanced fuzzy error 0.64 ± 0.06 0.74 ± 0.08 0.57 ± 0.07 0.66 ± 0.08 0.77 ± 0.04
Non-balanced fuzzy distance 0.66 ± 0.05 0.73 ± 0.07 0.61 ± 0.07 0.65 ± 0.08 0.79 ± 0.03
Class-balanced fuzzy distance 0.64 ± 0.06 0.74 ± 0.09 0.57 ± 0.06 0.65 ± 0.08 0.77 ± 0.03

Extremely randomized trees:

Non-balanced normal 0.66 ± 0.05 0.74 ± 0.07 0.60 ± 0.07 0.67 ± 0.07 0.78 ± 0.03
Class-balanced normal 0.65 ± 0.06 0.74 ± 0.07 0.59 ± 0.08 0.66 ± 0.08 0.78 ± 0.04
Non-balanced fuzzy error 0.64 ± 0.07 0.73 ± 0.08 0.59 ± 0.08 0.66 ± 0.08 0.78 ± 0.04
Class-balanced fuzzy error 0.64 ± 0.06 0.73 ± 0.07 0.58 ± 0.07 0.65 ± 0.08 0.78 ± 0.04
Non-balanced fuzzy distance 0.66 ± 0.06 0.75 ± 0.07 0.60 ± 0.07 0.66 ± 0.08 0.79 ± 0.04
Class-balanced fuzzy distance 0.65 ± 0.06 0.73 ± 0.08 0.59 ± 0.07 0.65 ± 0.08 0.78 ± 0.03

XGBoost:

Non-balanced normal 0.67 ± 0.06 0.74 ± 0.07 0.62 ± 0.08 0.68 ± 0.08 0.79 ± 0.04
Class-balanced normal 0.68 ± 0.06 0.66 ± 0.08 0.69 ± 0.06 0.67 ± 0.08 0.82 ± 0.03
Non-balanced fuzzy error 0.66 ± 0.06 0.74 ± 0.08 0.60 ± 0.06 0.67 ± 0.07 0.78 ± 0.03
Class-balanced fuzzy error 0.68 ± 0.06 0.66 ± 0.07 0.70 ± 0.08 0.67 ± 0.08 0.82 ± 0.04
Non-balanced fuzzy distance 0.68 ± 0.06 0.74 ± 0.07 0.64 ± 0.08 0.68 ± 0.08 0.80 ± 0.04
Class-balanced fuzzy distance 0.68 ± 0.05 0.65 ± 0.07 0.72 ± 0.06 0.66 ± 0.08 0.83 ± 0.03

Voting schemes:

Stacked classifier 0.66 ± 0.05 0.73 ± 0.08 0.61 ± 0.07 0.68 ± 0.08 0.79 ± 0.03
Hard voter 0.68 0.73 0.64 0.80

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.