Table A.1.
Computed excitation energies in cm−1 for Si III from different computational models.
VV | |||||||
---|---|---|---|---|---|---|---|
Level | n = 10 | n = 11 | n = 12 | n = 13 | CV | Eobs(a) | ΔE |
3s2 1S0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3s3p 3P![]() |
51 539 | 51 541 | 51 561 | 51 604 | 52 790 | 52 725 | −65 |
3s3p 3P![]() |
51 656 | 51 671 | 51 686 | 51 728 | 52 913 | 52 853 | −60 |
3s3p 3P![]() |
51 893 | 51 938 | 51 941 | 51 981 | 53 164 | 53 115 | −49 |
3s3p 1P![]() |
83 380 | 83 186 | 83 145 | 83 094 | 83 031 | 82 884 | −147 |
3p21D2 | 120 291 | 120 305 | 120 314 | 120 361 | 122 447 | 122 215 | −232 |
3p23P0 | 128 668 | 128 658 | 128 667 | 128 703 | 129 832 | 129 708 | −124 |
3p23P1 | 128 808 | 128 794 | 128 796 | 128 832 | 129 953 | 129 842 | −111 |
3p23P2 | 129 043 | 129 052 | 129 046 | 129 080 | 130 193 | 130 101 | −92 |
3s3d 3D3 | 141 773 | 141 743 | 141 761 | 141 794 | 143 106 | 142 944 | −162 |
3s3d 3D2 | 142 183 | 141 743 | 141 762 | 141 805 | 143 162 | 142 946 | −216 |
3s3d 3D1 | 142 470 | 141 743 | 141 762 | 141 812 | 143 208 | 142 948 | −260 |
3s4s 3S1 | 151 757 | 151 808 | 151 821 | 151 875 | 153 332 | 153 377 | 45 |
3p21S0 | 153 325 | 152 950 | 152 897 | 152 824 | 153 953 | 153 444 | −509 |
3s4s 1S0 | 157 694 | 157 704 | 157 698 | 157 701 | 159 065 | 159 070 | 5 |
3s3d 1D2 | 166 150 | 165 215 | 165 198 | 165 172 | 166 013 | 165 765 | −248 |
3s4p 3P![]() |
173 433 | 173 475 | 173 497 | 173 551 | 175 219 | 175 230 | 11 |
3s4p 3P![]() |
173 464 | 173 511 | 173 530 | 173 582 | 175 247 | 175 263 | 16 |
3s4p 3P![]() |
173 533 | 173 589 | 173 601 | 173 648 | 175 312 | 175 336 | 24 |
3s4p 1P![]() |
174 860 | 174 906 | 174 918 | 174 952 | 176 503 | 176 487 | −16 |
3p3d 3F![]() |
196 943 | 196 419 | 196 441 | 196 496 | 199 259 | 198 923 | −336 |
3p3d 3F![]() |
196 787 | 196 519 | 196 539 | 196 589 | 199 318 | 199 026 | −292 |
3p3d 3F![]() |
196 622 | 196 651 | 196 670 | 196 713 | 199 402 | 199 164 | −238 |
3s4d 3D1 | 199 846 | 199 861 | 199 884 | 199 920 | 201 691 | 201 598 | −93 |
3s4d 3D2 | 200 003 | 199 857 | 199 881 | 199 928 | 201 666 | 201 598 | −68 |
3s4d 3D3 | 200 134 | 199 855 | 199 879 | 199 934 | 201 634 | 201 599 | −35 |
3s4d 1D2 | 202 714 | 202 640 | 202 662 | 202 713 | 204 464 | 204 331 | −133 |
3s4f 1F![]() |
203 063 | 202 705 | 202 716 | 202 733 | 204 795 | 204 828 | 33 |
3p3d 1D![]() |
203 175 | 202 977 | 202 996 | 203 047 | 205 357 | 205 029 | −328 |
3s5s 3S1 | 204 234 | 204 288 | 204 303 | 204 359 | 206 118 | 206 176 | 58 |
3s5s 1S0 | 205 920 | 205 971 | 205 988 | 206 039 | 207 828 | 207 874 | 46 |
3s4f 3F![]() |
207 666 | 207 551 | 207 571 | 207 627 | 209 597 | 209 531 | −66 |
3s4f 3F![]() |
207 622 | 207 578 | 207 597 | 207 652 | 209 612 | 209 559 | −53 |
3s4f 3F![]() |
207 574 | 207 616 | 207 635 | 207 687 | 209 637 | 209 600 | −37 |
3s5p 1P![]() |
212 511 | 212 566 | 212 587 | 212 639 | 214 504 | 214 532 | 28 |
3s5p 3P![]() |
213 130 | 213 157 | 213 173 | 213 213 | 214 998 | 214 989 | −9 |
3s5p 3P![]() |
213 159 | 213 142 | 213 163 | 213 212 | 215 002 | 214 995 | −7 |
3s5p 3P![]() |
213 160 | 213 133 | 213 157 | 213 210 | 215 005 | 214 995 | −10 |
3p3d 3P![]() |
214 375 | 214 269 | 214 285 | 214 319 | 216 450 | 216 190 | −260 |
3p3d 3P![]() |
214 967 | 214 376 | 214 391 | 214 431 | 216 613 | 216 289 | −324 |
3p3d 3P![]() |
215 325 | 214 440 | 214 453 | 214 496 | 216 717 | 216 350 | −367 |
3p3d 3D![]() |
216 019 | 215 773 | 215 793 | 215 839 | 217 724 | 217 386 | −338 |
3p3d 3D![]() |
216 518 | 215 881 | 215 898 | 215 925 | 217 743 | 217 440 | −303 |
3p3d 3D![]() |
216 356 | 215 827 | 215 845 | 215 884 | 217 736 | 217 489 | −247 |
3s5f 1F![]() |
224 092 | 223 605 | 223 620 | 223 633 | 225 644 | 225 526 | −118 |
3p4s 3P![]() |
224 260 | 224 260 | 224 273 | 224 322 | 226 479 | 226 400 | −79 |
3p4s 3P![]() |
224 376 | 224 389 | 224 397 | 224 445 | 226 597 | 226 527 | −70 |
3p4s 3P![]() |
224 636 | 224 676 | 224 677 | 224 724 | 226 884 | 226 820 | −64 |
3s5d 3D1 | 225 236 | 225 165 | 225 187 | 225 232 | 227 105 | 227 081 | −24 |
3s5d 3D2 | 225 179 | 225 159 | 225 181 | 225 230 | 227 092 | 227 084 | −8 |
3s5d 3D3 | 225 124 | 225 154 | 225 177 | 225 226 | 227 076 | 227 089 | 13 |
3s5d 1D2 | 225 833 | 225 714 | 225 733 | 225 773 | 227 695 | 227 665 | −30 |
3p4s 1P![]() |
226 814 | 226 801 | 226 778 | 226 775 | 228 788 | 228 700 | −88 |
3s6s 3S1 | 227 576 | 227 630 | 227 648 | 227 703 | 229 556 | 229 623 | 67 |
3s5f 3F![]() |
228 134 | 228 194 | 228 207 | 228 265 | 230 201 | 230 268 | 67 |
3s5f 3F![]() |
228 133 | 228 194 | 228 206 | 228 264 | 230 201 | 230 269 | 68 |
3s5f 3F![]() |
228 134 | 228 195 | 228 217 | 228 265 | 230 201 | 230 271 | 70 |
3s5g 3G3 | 228 135 | 228 196 | 228 219 | 228 266 | 230 230 | 230 301 | 71 |
3s5g 3G4 | 228 159 | 228 208 | 228 231 | 228 288 | 230 232 | 230 302 | 70 |
3s5g 1G4 | 228 176 | 228 211 | 228 233 | 228 289 | 230 233 | 230 302 | 69 |
3s5g 3G5 | 228 169 | 228 209 | 228 232 | 228 288 | 230 232 | 230 302 | 70 |
3s6s 1S0 | 228 303 | 228 359 | 228 378 | 228 433 | 230 301 | 230 364 | 63 |
3s6p 3P![]() |
232 356 | 232 413 | 232 437 | 232 493 | 234 359 | 234 415 | 56 |
3s6p 3P![]() |
232 364 | 232 423 | 232 446 | 232 501 | 234 365 | 234 428 | 63 |
3s6p 3P![]() |
232 382 | 232 443 | 232 464 | 232 518 | 234 381 | 234 442 | 61 |
3p3d 1P![]() |
233 982 | 233 003 | 232982 | 232 927 | 234 923 | 234 388 | −535 |
3s5f 1F![]() |
234 526 | 233 780 | 233 783 | 233 763 | 235 612 | 235 414 | −198 |
3s6p 1P![]() |
234 522 | 234 025 | 234 033 | 234 066 | 235 957 | 235 951 | −6 |
3s6d 3D1 | 238 206 | 238 220 | 238 231 | 238 287 | 240 267 | 240 262 | −5 |
3s6d 3D2 | 238 211 | 238 245 | 238 256 | 238 308 | 240 278 | 240 284 | 6 |
3s6d 3D3 | 238 224 | 238 280 | 238 291 | 238 338 | 240 297 | 240 315 | 18 |
3s6d 1D2 | 238 470 | 238 484 | 238 498 | 238 548 | 240 537 | 240 550 | 13 |
3s7s 3S1 | 240 049 | 240 105 | 240 124 | 240 179 | 242 075 | 242 145 | 70 |
3s6f 3F![]() |
240 282 | 240 327 | 240 352 | 240 410 | 242 336 | 242 411 | 75 |
3s6f 3F![]() |
240 277 | 240 328 | 240 352 | 240 409 | 242 335 | 242 411 | 76 |
3s6f 3F![]() |
240 271 | 240 328 | 240 352 | 240 408 | 242 335 | 242 412 | 77 |
3s6g 3G3 | 240 301 | 240 363 | 240 387 | 240 440 | 242 400 | 242 474 | 74 |
3s6g 3G4 | 240 300 | 240 364 | 240 385 | 240 441 | 242 403 | 242 474 | 71 |
3s6g 1G4 | 240 302 | 240 365 | 240 388 | 240 443 | 242 405 | 242 474 | 69 |
3s6g 3G5 | 240 301 | 240 365 | 240 386 | 240 443 | 242 405 | 242 475 | 70 |
3s7s 1S0 | 240 428 | 240 487 | 240 508 | 240 564 | 242 466 | 242 538 | 72 |
3p4p 1P1 | 240 550 | 240 603 | 240 625 | 240 679 | 242 992 | 242 885 | −107 |
3s6f 1F![]() |
242 239 | 241 980 | 241 993 | 242 017 | 243 896 | 243 869 | −28 |
3p4p 3D1 | 242 550 | 242 573 | 242 548 | 242 602 | 244 839 | 244 737 | −102 |
3s7p 3P![]() |
242 822 | 242 881 | 242 906 | 242 962 | 244 862 | 244 929 | 67 |
3s7p 3P![]() |
242 827 | 242 887 | 242 910 | 242 966 | 244 866 | 244 933 | 67 |
3s7p 3P![]() |
242 836 | 242 898 | 242 920 | 242 975 | 244 874 | 244 943 | 69 |
3p4p 3D2 | 242 665 | 242 699 | 242 671 | 242 723 | 244 966 | 244 866 | −100 |
3p4p 3D3 | 242 864 | 242 913 | 242 881 | 242 930 | 245 194 | 245 087 | −107 |
3s7p 1P![]() |
243 236 | 243 291 | 243 313 | 243 364 | 245 250 | 244 871 | −379 |
3s7d 1D2 | 245 752 | 245 805 | 245 777 | 245 829 | 247 946 | 247 935 | −11 |
3p4p 3P0 | 245 541 | 245 588 | 245 603 | 245 649 | 247 965 | 247 872 | −93 |
3p4p 3P1 | 245 626 | 245 675 | 245 685 | 245 729 | 248 040 | 247 954 | −86 |
3p4p 3P2 | 245 863 | 245 922 | 245 910 | 245 956 | 248 239 | 248 168 | −71 |
3p4p 3S1 | 246 598 | 246 609 | 246 619 | 246 665 | 248 952 | 248 773 | −179 |
3s7d 3D1 | 247 056 | 247 068 | 247 092 | 247 148 | 249 067 | 249 094 | 27 |
3s7d 3D2 | 247 050 | 247 079 | 247 102 | 247 152 | 249 068 | 249 104 | 36 |
3s7d 3D3 | 247 045 | 247 096 | 247 118 | 247 160 | 249 074 | 249 121 | 47 |
3s7f 3F![]() |
247 629 | 247 682 | 247 707 | 247 765 | 249 698 | 249 774 | 76 |
3s7f 3F![]() |
247 626 | 247 683 | 247 707 | 247 764 | 249 697 | 249 775 | 78 |
3s7f 3F![]() |
247 622 | 247 683 | 247 707 | 247 763 | 249 696 | 249 775 | 79 |
3s7g 3G3 | 247 648 | 247 711 | 247 730 | 247 786 | 249 743 | 249 817 | 74 |
3s7g 3G4 | 247 647 | 247 711 | 247 729 | 247 787 | 249 746 | 249 818 | 72 |
3s7g 1G4 | 247 649 | 247 712 | 247 732 | 247 787 | 249 747 | 249 818 | 71 |
3s7g 3G5 | 247 648 | 247 712 | 247 730 | 247 788 | 249 747 | 249 819 | 72 |
3s7f 1F![]() |
248 401 | 248 352 | 248 371 | 248 415 | 250 333 | 250 366 | 33 |
Notes. The differences ΔE between the final computations and the observed values are shown in the last column. ( * )Labeling is changed from NIST-standard to better represent the composition of different levels in a Rydberg series, according to our calculations. As an example are two levels labeled with the same 3s5f 1F term but different indices are used to distinguish them. Details are given in the text.
References.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.