Issue |
A&A
Volume 627, July 2019
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 11 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201935494 | |
Published online | 27 June 2019 |
Constraints on HD 113337 fundamental parameters and planetary system
Combining long-base visible interferometry, disc imaging, and high-contrast imaging★
1
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité,
5 place Jules Janssen,
92195
Meudon,
France
e-mail: Simon.Borgniet@obspm.fr
2
Université Grenoble Alpes, IPAG, CNRS,
38000
Grenoble,
France
3
Steward Observatory, University of Arizona,
933 N Cherry Ave,
Tucson,
AZ
85721,
USA
4
Max Planck Institute for Astronomy,
Koenigstuhl 17,
69117
Heidelberg,
Germany
5
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena,
CA,
USA
6
Space sciences, Technologies & Astrophysics Research (STAR) Institute, University of Liège,
Liège,
Belgium
7
Université Côte d’Azur, OCA, CNRS, Lagrange, Parc Valrose,
Bât. Fizeau,
06108
Nice cedex 02,
France
8
Steward Observatory, University of Arizona,
933 N Cherry Ave,
Tucson,
AZ
85721,
USA
Received:
19
March
2019
Accepted:
25
May
2019
Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore.
Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques.
Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We took advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis.
Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7−2+4 MJup for HD 113337 b (confirmed companion) and ~16−3+10 MJup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations.
Key words: techniques: interferometric / techniques: high angular resolution / stars: individual: HD 113337 / planetary systems / stars: fundamental parameters
© S. Borgniet et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.