Table A.1
Analysis of the dependencies of the quantity on AV, O/H and MHI.
Model: y = α + βx, with ![]() |
||||
|
||||
Total sample | ||||
x | α | β | σ intr | ρ |
|
||||
AV [mag]† (CCM89) | −2.65 ± 0.15 | 0.09 ± 0.10 | 0.10 ± 0.10 | 0.5 ± 0.4 |
AV [mag]† (Calzetti) | −2.67 ± 0.16 | 0.10 ± 0.10 | 0.09 ± 0.10 | 0.5 ± 0.4 |
12 + log (O/H) (Tremonti+04) | −9 ± 2 | 0.7 ± 0.2 | 0.07 ± 0.10 | 0.88 ± 0.13 |
12 + log (O/H) N2 PP04 | −10 ± 5 | 0.9 ± 0.5 | 0.06 ± 0.10 | 0.8 ± 0.3 |
12 + log (O/H) N2 M13 | −12 ± 5 | 1.1 ± 0.6 | 0.08 ± 0.09 | 0.8 ± 0.2 |
12 + log (O/H) O3N2 PP04 | −8 ± 2 | 0.6 ± 0.3 | 0.08 ± 0.09 | 0.8 ± 0.2 |
12 + log (O/H) O3N2 M13 | −10 ± 3 | 0.9 ± 0.4 | 0.07 ± 0.10 | 0.8 ± 0.2 |
![]() |
−5.2 ± 1.2 | 0.27 ± 0.12 | 0.09 ± 0.07 | 0.8 ± 0.2 |
|
||||
Low-M∗ sample (log M∗ [M⊙] < 10.0) | ||||
x | α | β | σ intr | ρ |
|
||||
AV [mag]† (CCM89) | −2.62 ± 0.17 | 0.07 ± 0.11 | 0.10 ± 0.10 | 0.4 ± 0.5 |
AV [mag]† (Calzetti) | −2.66 ± 0.15 | 0.09 ± 0.09 | 0.10 ± 0.10 | 0.5 ± 0.4 |
12 + log (O/H) (Tremonti+04) | −9 ± 3 | 0.7 ± 0.3 | 0.07 ± 0.09 | 0.90 ± 0.11 |
12 + log (O/H) N2 PP04 | −10 ± 4 | 0.8 ± 0.4 | 0.07 ± 0.04 | 0.8 ± 0.2 |
12 + log (O/H) N2 M13 | −11 ± 5 | 1.0 ± 0.6 | 0.06 ± 0.05 | 0.8 ± 0.2 |
12 + log (O/H) O3N2 PP04 | −7 ± 3 | 0.5 ± 0.3 | 0.06 ± 0.04 | 0.81 ± 0.19 |
12 + log (O/H) O3N2 M13 | −11 ± 3 | 1.0 ± 0.4 | 0.07 ± 0.05 | 0.83 ± 0.19 |
![]() |
−4 ± 2 | 0.1 ± 0.2 | 0.16 ± 0.10 | 0.3 ± 0.4 |
|
||||
High-M∗ sample (log M∗ [M⊙] ≥ 10.0) | ||||
x | α | β | σ intr | ρ |
|
||||
AV [mag]† (CCM89) | −2.55 ± 0.19 | 0.03 ± 0.12 | 0.08 ± 0.10 | 0.2 ± 0.5 |
AV [mag]† (Calzetti) | −2.57 ± 0.19 | 0.04 ± 0.11 | 0.10 ± 0.06 | 0.2 ± 0.5 |
12 + log (O/H) (Tremonti+04) | −3 ± 8 | 0.0 ± 0.9 | 0.09 ± 0.10 | 0.0 ± 0.5 |
12 + log (O/H) N2 PP04 | 22 ± 17 | −3 ± 2 | 0.06 ± 0.03 | −0.8 ± 0.3 |
12 + log (O/H) N2 M13 | 27 ± 17 | −3 ± 2 | 0.09 ± 0.05 | −0.7 ± 0.2 |
12 + log (O/H) O3N2 PP04 | 5 ± 9 | −0.9 ± 1.0 | 0.07 ± 0.05 | −0.5 ± 0.4 |
12 + log (O/H) O3N2 M13 | 11 ± 14 | −1.6 ± 1.7 | 0.09 ± 0.06 | −0.5 ± 0.4 |
![]() |
−6.4 ± 1.9 | 0.4 ± 0.2 | 0.10 ± 0.05 | 0.8 ± 0.2 |
Notes. (α,β) are the best-fit linear regression coefficients, σintr is the intrinsic scatter about the best-fit regression line, and ρ is the correlation coefficient. We refer to Sect. 7 and to Table 2 for additional details on the regression analysis method.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.