Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A66 | |
Number of page(s) | 18 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201322312 | |
Published online | 08 April 2014 |
Cold gas properties of the Herschel Reference Survey
II. Molecular and total gas scaling relations
1
Laboratoire d’Astrophysique de Marseille – LAM, Université
d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388
Marseille Cedex 13,
France
e-mail: Alessandro.Boselli@lam.fr; Mederic.Boquien@lam.fr; Samuel.Boissier@lam.fr
2
Centre for Astrophysics & Supercomputing, Swinburne
University of Technology, Mail H30,
PO Box 218, VIC
3122
Hawthorn,
Australia
e-mail: lcortese@swin.edu.au; bcatinella@swin.edu.au
3
European Southern Observatory, Karl-Schwarzschild Str. 2, 85748
Garching bei Muenchen,
Germany
e-mail:
clagos@eso.org
4
Max-Planck Institut für Astrophysik, 85741
Garching,
Germany
5
Max-Planck-Institut für Extraterrestrische Physik,
85741
Garching,
Germany
e-mail:
amelie@mpe.mpg.de
Received:
18
July
2013
Accepted:
20
September
2013
We study the properties of the cold gas component of the interstellar medium of the Herschel Reference Survey, a complete volume-limited (15 ≲ D ≲ 25 Mpc), K-band-selected sample of galaxies spanning a wide range in morphological type (from ellipticals to dwarf irregulars) and stellar mass (109 ≲ Mstar ≲ 1011 M⊙). The multifrequency data in our hands are used to trace the molecular gas mass distribution and the main scaling relations of the sample, which put strong constraints on galaxy formation simulations. We extend the main scaling relations concerning the total and the molecular gas component determined for massive galaxies (Mstar ≳ 1010 M⊙) from the COLD GASS survey down to stellar masses Mstar ≃ 109 M⊙. As scaling variables we use the total stellar mass Mstar, the stellar surface density μstar, the specific star formation rate SSFR, and the metallicity of the target galaxies. By comparing molecular gas masses determined using a constant or a luminosity dependent XCO conversion factor, we estimate the robustness of these scaling relations on the very uncertain assumptions used to transform CO line intensities into molecular gas masses. The molecular gas distribution of a K-band-selected sample is significantly different from that of a far-infrared-selected sample since it includes a significantly smaller number of objects with M(H2) ≲ 6 × 109 M⊙. In spiral galaxies the molecular gas phase is only 25–30% of the atomic gas. The analysis also indicates that the slope of the main scaling relations depends on the adopted conversion factor. Among the sampled relations, all those concerning M(gas)/Mstar are statistically significant and show little variation with XCO. We observe a significant correlation between M(H2)/Mstar and SSFR, M(H2)/M(Hi) and μstar, M(H2)/M(Hi) and 12 + log (O/H), regardless of the adopted XCO. The total and molecular gas consumption timescales are anticorrelated with the specific star formation rate. The comparison of HRS and COLD GASS data indicates that some of the observed scaling relations are nonlinear.
Key words: galaxies: ISM / galaxies: spiral / galaxies: star formation / galaxies: fundamental parameters
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.