Issue |
A&A
Volume 700, August 2025
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 31 | |
Section | Planets, planetary systems, and small bodies | |
DOI | https://doi.org/10.1051/0004-6361/202553728 | |
Published online | 29 July 2025 |
Diving into the planetary system of Proxima with NIRPS
Breaking the metre per second barrier in the infrared★
1
Instituto de Astrofísica de Canarias (IAC),
Calle Vía Láctea s/n,
38205
La Laguna,
Tenerife,
Spain
2
Departamento de Astrofísica, Universidad de La Laguna (ULL),
38206
La Laguna,
Tenerife,
Spain
3
Institut Trottier de recherche sur les exoplanètes, Département de Physique, Université de Montréal,
Montréal,
Québec,
Canada
4
Observatoire du Mont-Mégantic,
Québec,
Canada
5
Observatoire de Genève, Département d’Astronomie, Université de Genève,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
6
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
7
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte,
Campus Universitário,
Natal,
RN
59072-970,
Brazil
8
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
9
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre,
4169-007
Porto,
Portugal
10
Department of Physics, University of Toronto,
Toronto,
ON
M5S 3H4,
Canada
11
Department of Physics & Astronomy, McMaster University,
1280 Main St W,
Hamilton,
ON
L8S 4L8,
Canada
12
Department of Physics, McGill University,
3600 rue University,
Montréal,
QC
H3A 2T8,
Canada
13
Department of Earth & Planetary Sciences, McGill University,
3450 rue University,
Montréal,
QC
H3A 0E8,
Canada
14
Departamento de Física, Universidade Federal do Ceará,
Caixa Postal 6030, Campus do Pici,
Fortaleza,
Brazil
15
Centro de Astrobiología (CAB),
CSIC-INTA, ESAC campus, Camino Bajo del Castillo s/n, 28692,
Villanueva de la Cañada (Madrid),
Spain
16
Centre Vie dans l’Univers, Faculté des sciences de l’Université de Genève,
Quai Ernest-Ansermet 30,
1205
Geneva,
Switzerland
17
European Southern Observatory (ESO),
Karl-Schwarzschild-Str. 2,
85748
Garching bei München,
Germany
18
Space Research and Planetary Sciences, Physics Institute, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
19
Consejo Superior de Investigaciones Científicas (CSIC),
28006
Madrid,
Spain
20
Bishop’s Univeristy, Dept of Physics and Astronomy,
Johnson-104E, 2600 College Street,
Sherbrooke,
QC
J1M 1Z7,
Canada
21
Department of Physics and Space Science, Royal Military College of Canada,
PO Box 17000, Station Forces,
Kingston,
ON,
Canada
22
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciên-cias da Universidade de Lisboa,
Campo Grande,
1749-016
Lisboa,
Portugal
23
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa,
Edifício C8,
1749-016
Lisboa,
Portugal
24
Centre of Optics, Photonics and Lasers, Université Laval,
Québec,
Canada
25
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada,
Canada
26
Aix Marseille Univ, CNRS, CNES, LAM,
Marseille,
France
27
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
28
European Southern Observatory (ESO),
Av. Alonso de Cordova 3107,
Casilla
19001,
Santiago de Chile,
Chile
29
Planétarium de Montréal,
Espace pour la Vie, 4801 av. Pierre-de Coubertin,
Montréal,
Québec,
Canada
30
Lund Observatory, Division of Astrophysics, Department of Physics, Lund University,
Box 118,
221 00
Lund,
Sweden
31
York University,
4700 Keele St,
North York,
ON
M3J 1P3,
Canada
32
University of British Columbia,
2329 West Mall,
Vancouver,
BC
V6T 1Z4,
Canada
33
Western University, Department of Physics & Astronomy and Institute for Earth and Space Exploration,
1151 Richmond Street,
London,
ON
N6A 3K7,
Canada
34
Light Bridges S.L., Observatorio del Teide, Carretera del Observatorio,
s/n Guimar,
38500
Tenerife,
Canarias,
Spain
35
University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München,
Scheinerstr. 1,
81679
Munich,
Germany
36
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
37
Subaru Telescope, National Astronomical Observatory of Japan (NAOJ),
650 N Aohoku Place,
Hilo,
HI
96720,
USA
38
Department of Astronomy & Astrophysics, University of Chicago,
5640 South Ellis Avenue,
Chicago,
IL
60637,
USA
39
Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Université Côte d’Azur,
Nice,
France
★★ Corresponding author: asm@iac.es
Received:
11
January
2025
Accepted:
19
March
2025
We obtained 420 high-resolution spectra of Proxima, over 159 nights, using the Near Infra Red Planet Searcher (NIRPS). We derived 149 nightly binned radial velocity measurements with a standard deviation of 1.69 ms−1 and a median uncertainty of 55 cms−1, and performed a joint analysis combining radial velocities, spectroscopic activity indicators, and ground-based photometry, to model the planetary and stellar signals present in the data, applying multi-dimensional Gaussian process regression to model the activity signals. We detect the radial velocity signal of Proxima b in the NIRPS data. All planetary characteristics are consistent with those previously derived using visible light spectrographs. In addition, we find evidence of the presence of the sub-Earth Proxima d in the NIRPS data. When combining the data with the HARPS observations taken simultaneous to NIRPS, we obtain a tentative detection of Proxima d and parameters consistent with those measured with ESPRESSO. By combining the NIRPS data with simultaneously obtained HARPS observations and archival data, we confirm the existence of Proxima d, and demonstrate that its parameters are stable over time and against change of instrument. We refine the planetary parameters of Proxima b and d, and find inconclusive evidence of the signal attributed to Proxima c (P = 1900 d) being present in the data. We measure Proxima b and d to have minimum masses of 1.055 ± 0.055 M⊕, and 0.260 ± 0.038 M⊕, respectively. Our results show that, in the case of Proxima, NIRPS provides more precise radial velocity data than HARPS, and a more significant detection of the planetary signals. The standard deviation of the residuals of NIRPS after the fit is ~80 cm s−1, showcasing the potential of NIRPS to measure precise radial velocities in the near-infrared.
Key words: instrumentation: spectrographs / techniques: radial velocities / planets and satellites: detection / stars: individual: Proxima / stars: rotation
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.