Issue |
A&A
Volume 698, May 2025
|
|
---|---|---|
Article Number | A177 | |
Number of page(s) | 13 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202453446 | |
Published online | 11 June 2025 |
Constraints on primordial non-Gaussianity from the cross-correlation of DESI luminous red galaxies and Planck CMB lensing
1
Instituto de Astrofísica de Canarias, C/ Vía Láctea, s/n, E-38205 La Laguna, Tenerife, Spain
2
Department of Physics & Astronomy, University of Rochester, 206 Bausch and Lomb Hall, P.O. Box 270171 Rochester, NY 14627-0171, USA
3
Departamento de Astroísica, Universidad de La Laguna, Avenida Francisco Sánchez, s/n, E-38205 La Laguna, Tenerife, Spain
4
Department of Physics and Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
5
Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo, ON N2L 2Y5, Canada
6
Waterloo Centre for Astrophysics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
7
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
8
Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA
9
Physics Dept., Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
10
Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
11
Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
12
IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
13
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Cd. de México C. P. 04510, México
14
NSF NOIRLab, 950 N. Cherry Ave., Tucson, AZ 85719, USA
15
University of California, Berkeley, 110 Sproul Hall #5800, Berkeley, CA 94720, USA
16
Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip, CP 111711 Bogotá, Colombia
17
Observatorio Astronómico, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio H, CP 111711 Bogotá, Colombia
18
Institut d’Estudis Espacials de Catalunya (IEEC), c/ Esteve Terradas 1, Edifici RDIT, Campus PMT-UPC, 08860 Castelldefels, Spain
19
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK
20
Institute of Space Sciences, ICE-CSIC, Campus UAB, Carrer de Can Magrans s/n, 08913 Bellaterra, Barcelona, Spain
21
Fermi National Accelerator Laboratory, PO Box 500 Batavia, IL 60510, USA
22
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
23
Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA
24
Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA
25
The Ohio State University, Columbus, 43210 OH, USA
26
School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
27
Department of Physics, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA
28
Department of Physics and Astronomy, University of California, Irvine 92697, USA
29
Sorbonne Université, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), FR-75005 Paris, France
30
Departament de Física, Serra Húnter, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain
31
Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Edifici Cn, Campus UAB, 08193 Bellaterra, (Barcelona), Spain
32
Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
33
Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
34
Department of Physics & Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA
35
Departamento de Física, DCI-Campus León, Universidad de Guanajuato, Loma del Bosque 103, León, Guanajuato C. P. 37150, Mexico
36
Instituto Avanzado de Cosmología A. C., San Marcos 11 – Atenas 202. Magdalena Contreras, Ciudad de México C. P. 10720, Mexico
37
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, s/n, E-18008 Granada, Spain
38
Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10, 08930 Barcelona, Spain
39
Physics Department, Yale University, P.O. Box 208120 New Haven, CT 06511, USA
40
Department of Astronomy, The Ohio State University, 4055 McPherson Laboratory, 140 W 18th Avenue, Columbus, OH 43210, USA
41
Department of Physics and Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
42
CIEMAT, Avenida Complutense 40, E-28040 Madrid, Spain
43
University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
44
Department of Physics, University of California, Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300, USA
⋆ Corresponding author: jrbermejo@iac.es
Received:
14
December
2024
Accepted:
14
April
2025
Aims. We use the angular cross-correlation between a luminous red galaxy (LRG) sample from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey data release DR9 and the Planck cosmic microwave background (CMB) lensing maps to constrain the local primordial non-Gaussianity parameter, fNL, using the scale-dependent galaxy bias effect. The galaxy sample covers approximately 40% of the sky, contains galaxies up to redshift z ∼ 1.4, and is calibrated with the LRG spectra that have been observed for DESI Year 1 (Y1).
Methods. We apply a nonlinear imaging systematics treatment based on neural networks to remove observational effects that could potentially bias the fNL measurement. Our measurement is performed without blinding, but the full analysis pipeline is tested with simulations including systematics.
Results. Using the two-point angular cross-correlation between LRG and CMB lensing only, we find fNL = 39−38+40 at the 68% confidence level, and our result is robust in terms of systematics and cosmological assumptions. If we combine this information with the autocorrelation of LRG, applying a scale cut to limit the impact of systematics, we find fNL = 24−21+20 at the 68% confidence level. Our results motivate the use of CMB lensing cross-correlations to measure fNL with future datasets, given its stability in terms of observational systematics compared to the angular autocorrelation. Furthermore, performing accurate systematics mitigation is crucially important in order to achieve competitive constraints on fNL from CMB lensing cross-correlation in combination with the tracers’ autocorrelation.
Key words: cosmic background radiation / cosmology: observations / early Universe / large-scale structure of Universe / inflation
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.