Issue |
A&A
Volume 694, February 2025
|
|
---|---|---|
Article Number | A258 | |
Number of page(s) | 15 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202453302 | |
Published online | 18 February 2025 |
Tidal tails of nearby open clusters
I. Mapping with Gaia DR3
1
Rheinische Friedrich-Wilhelms-Universität Bonn,
Regina-Pacis-Weg 3,
53113
Bonn,
Germany
2
Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn,
Nussallee 14-16,
53115
Bonn,
Germany
3
Astronomical Institute, Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2,
180 00
Praha 8,
Czech Republic
★ Corresponding authors; s14drisb@uni-bonn.de; vjadhav@uni-bonn.de
Received:
4
December
2024
Accepted:
10
January
2025
Context. Tidal tails of open clusters are the result of stellar evaporation from the cluster through the Galactic potential and internal dynamics. With the recent availability of high-precision data, tidal tails are being detected for most of the nearby open clusters.
Aims. We identify the tidal tail members for all open clusters within a distance of 400 pc that are older than 100 Myr and have >100 members. To do this, we use model-independent methods.
Methods. We used the convergent-point (CP) method to identify the co-moving stars near the open clusters using Gaia DR3 data. A new method called the self-compact convergent-point method was proposed and applied to some of the clusters. It performed better overall in tracing the tails. We also analysed the colour-magnitude diagrams and orbital energy to diagnose possible contamination.
Results. Nineteen out of 21 clusters have tidal tails. Five of them were discovered for the first time through this work. The typical span of the tidal tails is 20–200 pc, and 30–700 member stars lie in the region inside the tidal radius and the tidal tails. Four out of 19 tidal tails are tilted away from direction of the Galactic centre. This contradicts the known theory of the tidal-tail formation. The luminosity functions of the tails and clusters are consistent with each other and with the canonical stellar interstellar mass function, but systematically higher radial velocities for the trailing tail than for the leading tail were observed for the first time.
Conclusions. The CP method is useful for detecting tidal tails on a scale of ≈100 pc for clusters closer than 400 pc. A further analysis of theoretical N-body models is required to understand the incompleteness and biases in the current sample of tidal tails.
Key words: methods: observational / Galaxy: kinematics and dynamics / open clusters and associations: general
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.