Issue |
A&A
Volume 694, February 2025
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 11 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202452805 | |
Published online | 30 January 2025 |
Impact of the observation frequency coverage on the significance of a gravitational wave background detection in pulsar timing array data
1
Dipartimento di Fisica “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
2
INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
3
INAF – Osservatorio Astronomico di Brera, Via Brera 20, I-20121 Milano, Italy
4
ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
5
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
6
LPC2E, OSUC, Univ Orléans, CNRS, CNES, Observatoire de Paris, F-45071 Orléans, France
7
Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d’Orléans, CNRS, 18330 Nançay, France
8
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
9
LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-92195 Meudon, France
⋆ Corresponding authors; i.ferranti@campus.unimib.it, mikel.falxa@unimib.it
Received:
29
October
2024
Accepted:
7
December
2024
Pulsar timing srray (PTA) collaborations gather high-precision timing measurements of pulsars, with the aim of detecting gravitational wave (GW) signals. A major challenge lies in the identification and characterisation of the different sources of noise that may hamper their sensitivity to GWs. The presence of time-correlated noise that resembles the target signal might give rise to degeneracies that can directly impact the detection statistics. In this work, we focus on the covariance that exists between a ‘chromatic’ dispersion measure (DM) noise and an ‘achromatic’ stochastic gravitational wave background (GWB). The term ‘chromatic’ associated with the DM noise means that its amplitude depends on the frequency of the incoming pulsar photons measured by the radio telescopes. Multi-frequency coverage is then required to accurately characterise its chromatic features and when the coverage of incoming frequency is poor, it becomes impossible to disentangle chromatic and achromatic noise contributions. In this paper, we explore this situation by injecting realistic GWB into 100 realisations of two mock versions of the second data release (DR2) of the European PTA (EPTA), characterised by different types of frequency coverage. The first dataset is a faithful copy of DR2, in which the first half of the data is dominated by only one frequency channel for the observations; the second one is identical, except for a more homogeneous frequency coverage across the full dataset. We show that for 91% of the injections, a better frequency coverage leads to an improved statistical significance (≈1.3 dex higher log Bayes factor on average) of the GWB and a better characterisation of its properties. We propose a metric to quantify the degeneracy between DM and GWB parameters. We show that it is correlated with a loss of significance for the recovered GWB, as well as with an increase in the GWB bias towards a higher and flatter spectral shape. In the second part of the paper, this correlation between the loss of GWB significance, the degeneracy between the DM and GWB parameters, and the frequency coverage is further investigated using an analytical toy model.
Key words: gravitational waves / methods: data analysis / pulsars: general
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.