Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A296 | |
Number of page(s) | 15 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202452235 | |
Published online | 22 November 2024 |
Abundances of iron-peak elements in 58 bulge spheroid stars from APOGEE
1
Universidade de São Paulo, IAG, Departamento de Astronomia,
05508-090
São Paulo,
Brazil
2
Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University,
Box 43,
221 00
Lund,
Sweden
3
Max Planck Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg,
Germany
4
Instituto de Astronomía, Universidad Católica del Norte,
Av. Angamos 0610,
Antofagasta,
Chile
5
University of Arizona, Steward Observatory,
Tucson,
AZ
85719,
USA
6
Observatório Nacional,
rua General José Cristino 77,
São Cristóvão, Rio de Janeiro
20921-400,
Brazil
7
NSF NOIRLab,
950 N. Cherry Ave.,
Tucson,
AZ
85719,
USA
8
Instituto de Astrofísica de Canarias, C/Via Lactea s/n,
38205
La Laguna, Tenerife,
Spain
9
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna, Tenerife,
Spain
10
Instituto de Astronomía, Universidad Nacional Autónoma de México,
A. P. 106, C.P.
22800,
Ensenada, B. C.,
Mexico
11
Astrophysikalisches Institut Potsdam,
An der Sternwarte 16,
Potsdam
14482,
Germany
12
Universidade Federal do Rio Grande do Sul,
Caixa Postal 15051,
91501-970
Porto Alegre,
Brazil
13
Department of Physics and Astronomy and JINA Center for the Evolution of the Elements (JINA-CEE), University of Notre Dame,
Notre Dame,
IN
46556,
USA
14
Departament de Física Quãntica i Astrofísica (FQA), Universitat de Barcelona (UB),
Martí i Franquès, 1,
08028
Barcelona,
Spain
15
Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB),
Martí i Franquès 1,
08028
Barcelona,
Spain
16
Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Campus UPC,
08860
Castelldefels (Barcelona),
Spain
17
Astrophysics Research Institute, Liverpool John Moores University,
Liverpool,
L3 5RF,
UK
18
Instituto de Astrofísica, Facultad de Ciencias Exactas, Universidad Andres Bello,
Fernández Concha 700,
Las Condes, Santiago,
Chile
19
Vatican Observatory,
Vatican City State
00120,
Italy
20
Departamento de Astronomia, Casilla 160-C, Universidad de Concepcion,
Chile
21
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena. Avenida Raúl Bitrán S/N,
La Serena,
Chile
22
Departamento de Astronomía, Facultad de Ciencias, Universidad de La Serena.
Av. Juan Cisternas 1200,
La Serena,
Chile
23
Universidade Federal de Sergipe, Av. Marechal Rondon, S/N,
49000-000
São Cristóvão,
SE,
Brazil
24
Instituto de Astrofísica, Pontificia Universidad Católica de Chile,
Vicuña Mackenna 4860, Macul, Casilla 306,
Santiago 22,
Chile
25
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange,
Nice,
France
26
Centro de Astronomía (CITEVA), Universidad de Antofagasta,
Avenida Angamos 601,
Antofagasta
1270300,
Chile
★ Corresponding author; b.barbuy@iag.usp.br
Received:
13
September
2024
Accepted:
9
October
2024
Context. Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weak s-process, and α-rich freeze-out.
Aims. The aim of this work is to derive the abundances of V, Cr, Mn, Co, Ni, and Cu in 58 bulge spheroid stars and to compare them with the results of a previous analysis of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE).
Methods. We selected the best lines for V, Cr, Mn, Co, Ni, and Cu located within the H-band of the spectrum, identifying the most suitable ones for abundance determination, and discarding severe blends. Using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project, we derived the individual abundances through spectrum synthesis. We then complemented these measurements with similar results from different bulge field and globular cluster stars, in order to define the trends of the individual elements and compare with the results of chemical-evolution models.
Results. We verify that the H-band has useful lines for the derivation of the elements V, Cr, Mn, Co, Ni, and Cu in moderately metalpoor stars. The abundances, plotted together with others from high-resolution spectroscopy of bulge stars, indicate that: V, Cr, and Ni vary in lockstep with Fe; Co tends to vary in lockstep with Fe, but could be showing a slight decrease with decreasing metallicity; and Mn and Cu decrease with decreasing metallicity. These behaviours are well reproduced by chemical-evolution models that adopt literature yields, except for Cu, which appears to drop faster than the models predict for [Fe/H]<−0.8. Finally, abundance indicators combined with kinematical and dynamical criteria appear to show that our 58 sample stars are likely to have originated in situ.
Key words: stars: atmospheres / Galaxy: abundances / Galaxy: bulge
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.