Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A304 | |
Number of page(s) | 17 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202452025 | |
Published online | 21 November 2024 |
Chromospheric Mg I emission lines of pre-main-sequence stars★
1
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
3-1-1 Yoshinodai, Chuo-ku, Sagamihara,
Kanagawa
252-5210,
Japan
2
Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo,
407-2 Nishigaichi, Sayo, Sayo,
Hyogo
679-5313,
Japan
3
Subaru Telescope, National Astronomical Observatory of Japan,
650 North A’ohoku Place,
Hilo,
HI
96720,
USA
★★ Corresponding author; yamashita.mai@jaxa.jp
Received:
28
August
2024
Accepted:
30
September
2024
Context. To reveal details of the internal structure, the relationship between chromospheric activity and the Rossby number has been extensively examined for main-sequence stars. For active pre-main-sequence (PMS) stars, it is suggested that the level of activity be assessed using optically thin emission lines, such as Mg I.
Aims. We aim to detect Mg I chromospheric emission lines from PMS stars and to determine whether the chromosphere is activated by the dynamo process or by mass accretion from protoplanetary disks.
Methods. We analyzed high-resolution optical spectra of 64 PMS stars obtained with the Very Large Telescope (VLT)/X-shooter and UVES and examined the infrared Ca II (8542 Å) and Mg I (8807 Å) emission lines. To detect the weak chromospheric emission lines, we determined the atmospheric parameters (Teff and log 𝑔) and the degree of veiling of the PMS stars by comparing the observed spectra with photospheric model spectra.
Results. After subtracting the photospheric model spectrum from the PMS spectrum, we detected Ca II and Mg I as emission lines. The strengths of the Mg I emission lines in PMS stars with no veiling are comparable to those in zero-age main-sequence (ZAMS) stars if both types of stars have similar Rossby numbers. The Mg I emission lines in these PMS stars are thought to be formed by a dynamo process similar to that in ZAMS stars. In contrast, the Mg I emission lines in PMS stars with veiling are stronger than those in ZAMS stars. These objects are believed to have protoplanetary disks, where mass accretion generates shocks near the photosphere, heating the chromosphere.
Conclusions. The chromosphere of PMS stars is activated not only by the dynamo process but also by mass accretion.
Key words: accretion, accretion disks / techniques: spectroscopic / stars: chromospheres / stars: low-mass / stars: pre-main sequence / stars: rotation
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.