Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A98 | |
Number of page(s) | 19 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202451427 | |
Published online | 31 October 2024 |
Transferring spectroscopic stellar labels to 217 million Gaia DR3 XP stars with SHBoost
1
Leibniz-Institut für Astrophysik Potsdam (AIP),
An der Sternwarte 16,
14482
Potsdam,
Germany
2
Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona,
C Martí i Franquès, 1,
08028
Barcelona,
Spain
3
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB),
C Martí i Franquès, 1,
08028
Barcelona,
Spain
4
Institut d’Estudis Espacials de Catalunya (IEEC),
Edifici RDIT, Campus UPC,
08860
Castelldefels (Barcelona),
Spain
5
Instituto de Astrofísica de Canarias,
38200
La Laguna,
Tenerife,
Spain
6
Departamento de Astrofísica, Universidad de La Laguna,
38205
La Laguna,
Tenerife,
Spain
7
Institut für Physik und Astronomie, Universität Potsdam,
Haus 28 Karl-Liebknecht-Str. 24/25,
14476
Golm,
Germany
8
INAF – Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
9
Zentrum für Astronomie der Universität Heidelberg,
Landessternwarte, Königstuhl 12,
69117
Heidelberg,
Germany
10
Max Planck Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg,
Germany
11
CIGUS CITIC – Department of Computer Science and Information Technologies, University of A Coruña,
Campus de Elviña s/n,
A Coruña,
15071,
Spain
12
Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de la Rioja,
Spain
13
Escuela de Arquitectura y Politécnica, Universidad Europea de Valencia,
Spain
14
Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA),
Camino Bajo del Castillo s/n,
28692
Villanueva de la Cañada,
Madrid,
Spain
15
Department of Astrophysics, University of Vienna,
Türkenschanzstraße 17,
1180
Wien,
Austria
16
Lund Observatory, Division of Astrophysics, Department of Physics, Lund University,
Box 43,
22100
Lund,
Sweden
17
GEPI, Observatoire de Paris, Université PSL, CNRS,
5 Place Jules Janssen,
92190
Meudon,
France
★ Corresponding author; fanders@icc.ub.edu
Received:
8
July
2024
Accepted:
20
September
2024
With Gaia Data Release 3 (DR3), new and improved astrometric, photometric, and spectroscopic measurements for 1.8 billion stars have become available. Alongside this wealth of new data, however, there are challenges in finding efficient and accurate computational methods for their analysis. In this paper, we explore the feasibility of using machine learning regression as a method of extracting basic stellar parameters and line-of-sight extinctions from spectro-photometric data. To this end, we built a stable gradient-boosted random-forest regressor (xgboost), trained on spectroscopic data, capable of producing output parameters with reliable uncertainties from Gaia DR3 data (most notably the low-resolution XP spectra), without ground-based spectroscopic observations. Using Shapley additive explanations, we interpret how the predictions for each star are influenced by each data feature. For the training and testing of the network, we used high-quality parameters obtained from the StarHorse code for a sample of around eight million stars observed by major spectroscopic stellar surveys, complemented by curated samples of hot stars, very metal-poor stars, white dwarfs, and hot sub-dwarfs. The training data cover the whole sky, all Galactic components, and almost the full magnitude range of the Gaia DR3 XP sample of more than 217 million objects that also have reported parallaxes. We have achieved median uncertainties of 0.20 mag in V-band extinction, 0.01 dex in logarithmic effective temperature, 0.20 dex in surface gravity, 0.18 dex in metallicity, and 12% in mass (over the full Gaia DR3 XP sample, with considerable variations in precision as a function of magnitude and stellar type). We succeeded in predicting competitive results based on Gaia DR3 XP spectra compared to classical isochrone or spectral-energy distribution fitting methods we employed in earlier works, especially for parameters AV and Teff, along with the metallicity values. Finally, we showcase some potential applications of this new catalogue, including extinction maps, metallicity trends in the Milky Way, and extended maps of young massive stars, metal-poor stars, and metal-rich stars.
Key words: catalogs / stars: general / stars: statistics / Galaxy: general / Galaxy: stellar content / Galaxy: structure
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.