Issue |
A&A
Volume 689, September 2024
|
|
---|---|---|
Article Number | A76 | |
Number of page(s) | 25 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202349136 | |
Published online | 03 September 2024 |
Revisiting the massive star-forming complex RCW 122: New millimeter and submillimeter study
1
Instituto de Astrofísica de La Plata (UNLP – CONICET),
La Plata,
Argentina
e-mail: nduronea@fcaglp.unlp.edu.ar
2
Departamento de Astronomía, Universidad de Chile,
Casilla 36,
Santiago de Chile,
Chile
3
Instituto de Astronomía y Física del Espacio (UBA, CONICET),
CC 67, Suc. 28,
1428
Buenos Aires,
Argentina
4
Dept. Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemática y Computación, Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva,
Spain
5
Instituto Universitario Carlos I de Física teórica y Computacional, Universidad de Granada,
Spain
6
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata,
Paseo del Bosque s/n,
1900
La Plata,
Argentina
Received:
30
December
2023
Accepted:
26
June
2024
In this paper, we present a new multifrequency study of the giant star-forming complex RCW 122. We used molecular data obtained with the ASTE 10 m and the APEX 12 m telescopes, along with infrared observations spanning from 3.6 µm to 870 µm, obtained from available databases. We also incorporated a range of public datasets, including the radio continuum at 3 GHz, narrowband Ha images, and deep JHK photometry. Our analysis focuses mostly on cataloged ATLASGAL sources, showcasing a spectrum of evolutionary stages from infrared dark cloud (IRDC)/high-mass protostellar object (HMPO) to ultra-compact HII region (UCHII), as inferred from preliminary inspections of the public dataset. Based on ASTE HCO+(4−3) and CO(3−2) data, we identified five molecular clumps, designated A, B, C, D, and E, as molecular counterparts of the ATLASGAL sources. These clumps have radial velocities ranging from ~−15 km s−1 to −10 km s−1, confirming their association with RCW 122. In addition, we report the detection of 20 transitions from 11 distinct molecules in the APEX spectra in the frequency ranges from 258.38 GHz to 262.38 GHz, 228.538 GHz to 232.538 GHz, and 218.3 GHz to 222.3 GHz, unveiling a diverse chemical complexity among the clumps. Utilizing CO(2−1) and C18O(2−1) data taken from the observations with the APEX telescope, we estimated the total LTE molecular mass, ranging from 200 M⊙ (clump A) to 4400 M⊙ (clump B). Our mid- to far-infrared (MIR-FIR) flux density analysis yielded minimum dust temperatures of 23.7 K (clump A) to maximum temperatures of 33.9 K (clump B), indicating varying degrees of internal heating among the clumps. The bolometric luminosities span 1.7×103 L⊙ (clump A) to 2.4×105 L⊙ (clump B), while the total (dust+gas) mass ranges from 350 M⊙ (clump A) to 3800 M⊙ (clump B). Our analysis of the molecular line richness, L/M ratios, and CH3CCH and dust temperatures reveals an evolutionary sequence of A/E→C→D/B, consistent with preliminary inferences of the ATLASGAL sources. In this context, clumps A and E exhibit early stages of collapse, with clump A likely in an early HMPO phase, which is supported by identifying a candidate molecular outflow. Clump E appears to be in an intermediate stage between IRDC and HMPO. Clumps D and B show evidence of being in the UCHII phase, with clump B likely more advanced. Clump C likely represents an intermediate stage between HMPO and HMC. Our findings suggest clump B is undergoing ionization and heating by multiple stellar and protostellar members of the stellar cluster DBS 119. Meanwhile, other cluster members may be responsible for ionizing other regions of RCW 122 that have evolved into fully developed HII regions, beyond the molecular dissociation stage.
Key words: astrochemistry / stars: formation / HII regions / ISM: molecules / submillimeter: ISM / ISM: individual objects: RCW 122
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.