Issue |
A&A
Volume 688, August 2024
|
|
---|---|---|
Article Number | A166 | |
Number of page(s) | 7 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202450712 | |
Published online | 15 August 2024 |
Optimal bolometer transfer function deconvolution for CMB experiments through maximum likelihood mapmaking
Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
e-mail: artem.basyrov@astro.uio.no
Received:
14
May
2024
Accepted:
24
June
2024
We revisit the impact of finite time responses of bolometric detectors used for deep observations of the cosmic microwave background (CMB). Until now, bolometer transfer functions have been accounted for through a two-step procedure by first deconvolving an estimate of their Fourier-space representation from the raw time-ordered data (TOD), and then averaging the deconvolved TOD into pixelized maps. However, for many experiments, including the Planck High Frequency Instrument (HFI), it is necessary to apply an additional low-pass filter to avoid an excessive noise boost, which leads to an asymmetric effective beam. In this paper we demonstrate that this effect can be avoided if the transfer function deconvolution and pixelization operations are performed simultaneously through integrated maximum likelihood mapmaking. The resulting algorithm is structurally identical to the artDeco algorithm for beam deconvolution. We illustrate the relevance of this method with simulated Planck HFI 143 GHz data, and find that the resulting effective beam is both more symmetric than with the two-step procedure, resulting in a sky-averaged ellipticity that is 64% lower, and an effective beam full-width-at-half-maximum (FWHM) that is 2.3% smaller. Similar improvements are expected for any other bolometer-based CMB experiments with long time constants.
Key words: instrumentation: detectors / methods: data analysis / methods: numerical / methods: statistical / cosmic background radiation / cosmology: observations
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.