Issue |
A&A
Volume 687, July 2024
|
|
---|---|---|
Article Number | A100 | |
Number of page(s) | 17 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202348681 | |
Published online | 01 July 2024 |
Buoyancy glitches in pulsating stars revisited
1
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
e-mail: mcunha@astro.up.pt
2
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, 34229, 06304 Nice cedex 4, France
3
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
4
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
Received:
20
November
2023
Accepted:
9
April
2024
Sharp structural variations induce specific signatures on stellar pulsations that can be studied to infer localised information on the stratification of the star. This information is key to improve our understanding of the physical processes that lead to the structural variations and how to model them. Here we revisit and extend the analysis of the signature of different types of buoyancy glitches in gravity-mode and mixed-mode pulsators presented in earlier works, including glitches with step-like, Gaussian-like, and Dirac-δ-like shapes. In particular, we provide analytical expressions for the perturbations to the periods and show that these can be reliably used in place of the expressions provided for the period spacings, with the advantage that the use of the new expressions does not require modes with consecutive radial orders to be observed. Based on a comparison with two limit cases and on simulated data, we further tested the accuracy of the expression for the Gaussian-like glitch signature whose derivation in an earlier work involved a significant approximation. We find that the least reliable glitch parameter inferred from fitting that expression is the amplitude, which can be up to a factor of two larger than the true amplitude, reaching this limit when the glitch is small. We further discuss the impact on the glitch signature of considering a glitch in the inner and outer half of the g-mode cavity, emphasising the break of symmetry that takes place in the case of mixed-mode pulsators.
Key words: stars: evolution / stars: interiors / stars: oscillations
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.