Issue |
A&A
Volume 686, June 2024
|
|
---|---|---|
Article Number | A96 | |
Number of page(s) | 8 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202349064 | |
Published online | 03 June 2024 |
Revisiting the abundance pattern and charge-exchange emission in the centre of M 82
Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
e-mail: kxfukushima@gmail.com
Received:
22
December
2023
Accepted:
18
March
2024
Context. The interstellar medium (ISM) in starburst galaxies contains many chemical elements that are synthesised by core-collapse supernova explosions. By measuring the abundances of these metals, we can study the chemical enrichment within the galaxies and the transportation of metals into the circumgalactic environment through powerful outflows.
Aims. We performed a spectral analysis of the X-ray emissions from the core of M 82 using the Reflection Grating Spectrometer (RGS) on board XMM-Newton to accurately estimate the metal abundances in the ISM.
Methods. We analysed over 300 ks of RGS data observed with 14 position angles, covering a cross-dispersion width of 80 arcsec. We employed multi-temperature thermal plasma components in collisional ionisation equilibrium (CIE) to reproduce the observed spectra, each of which exhibited a different spatial broadening.
Results. The O VII band CCD image shows a broader distribution that those for the O VIII and Fe-L bands. The O VIII line profiles have a prominent double-peaked structure that corresponds to the north- and southward outflows. The O VII triplet feature exhibits marginal peaks. A single CIE component that is convolved with the O VII band image approximately reproduces the spectral shape. A CIE model combined with a charge-exchange emission model also successfully reproduces the O VII line profiles. However, the ratio of these two components varies significantly with the observed position angles, which is physically implausible. Spectral fitting of the broadband spectra suggests a multi-temperature phase in the ISM that is approximated by three components at 0.1, 0.4, and 0.7 keV. Notably, the 0.1 keV component exhibits a broader distribution than the 0.4 and 0.7 keV plasmas. The derived abundance pattern shows super-solar N/O, solar Ne/O and Mg/O, and half-solar Fe/O ratios. These results indicate the chemical enrichment by core-collapse supernovae in starburst galaxies.
Key words: astrochemistry / ISM: abundances / galaxies: ISM / galaxies: clusters: individual: M 82 / galaxies: starburst / X-rays: ISM
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.