Issue |
A&A
Volume 684, April 2024
|
|
---|---|---|
Article Number | A173 | |
Number of page(s) | 16 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202348961 | |
Published online | 19 April 2024 |
Variable stars in galactic globular clusters
I. The population of RR Lyrae stars★
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Observatoire de Sauverny,
1290
Versoix,
Switzerland
e-mail: mauricio.cruz@correo.nucleares.unam.mx; richard.anderson@epfl.ch
Received:
14
December
2023
Accepted:
12
February
2024
We present a comprehensive catalog of 2824 RR Lyrae stars (RRLs) residing in 115 Galactic globular clusters (GCs). Our catalog includes 1594 fundamental-mode (RRab), 824 first-overtone (RRc), and 28 double-mode (RRd) RRLs, as well as 378 RRLs of an unknown pulsation mode. We cross-matched 481 349 RRLs reported in the third Data Release (DR3) of the ESA mission Gaia and the literature to 170 known GCs. Membership probabilities were computed as the products of a position and shape-dependent prior and a likelihood was computed using parallaxes, proper motions, and, where available, radial velocities from Gaia. Membership likelihoods of RRLs were computed by comparing cluster average parameters based on known member stars and the cross-matched RRLs. We determined empirical RRL instability strip (IS) boundaries based on our catalog and detected three new cluster RRLs inside this region via their excess Gaia G-band photometric uncertainties. We find that 77% of RRLs in GCs are included in the Gaia DR3 Specific Object Study, and 82% were classified as RRLs by the Gaia DR3 classifier, with the majority of the missing sources being located at the crowded GC centers. Surprisingly, we find that 25% of cluster member stars located within the empirical IS are not RRLs and appear to be non-variable. Additionally, we find that 80% of RRab, 84% of RRc, and 100% of the RRd stars are located within theoretical IS boundaries predicted using MESA models with Z = 0.0003, M = 0.7 M⊙, and Y = 0.290. Unexpectedly, a higher Y = 0.357 is required to fully match the location of RRc stars, and lower Y = 0.220 is needed to match the location of RRab stars. Lastly, our catalog does not exhibit an Oosterhoff dichotomy, with at least 22 GCs located inside the Oosterhoff “gap”, which is close to the mode of the distribution of mean RRL periods in GCs.
Key words: catalogs / stars: variables: RR Lyrae / globular clusters: general
Tables 1, 4, A.2 and D.1 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A173
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.