Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 16 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202244628 | |
Published online | 01 February 2024 |
Exploring the dust grain size and polarization mechanism in the hot and massive Class 0 disk IRAS 16293-2422 B★
1
Max-Planck-Institut für extraterrestrische Physik,
Gießenbachstraße 1,
85748
Garching bei München,
Germany
e-mail: jzamponi@mpe.mpg.de
2
Department of Physics, National Sun Yat-Sen University,
No. 70, Lien-Hai Road,
Kaohsiung City
80424,
Taiwan,
ROC
3
Department of Astronomy, The University of Texas at Austin,
2500 Speedway,
Austin,
TX
78712,
USA
4
Department of Astronomy, University of Arizona,
933 N. Cherry Ave.,
Tucson,
AZ
85721,
USA
Received:
29
July
2023
Accepted:
1
November
2023
Context. Multiwavelength dust continuum and polarization observations arising from self-scattering have been used to investigate grain sizes in young disks. However, the likelihood of self-scattering being the polarization mechanism in embedded disks decreases for very highly optically thick disks and makes us reconsider some of the size constraints from polarization, particularly for younger and more massive disks. The 1.3 mm polarized emission detected toward the hot (≳400 K) Class 0 disk IRAS 16293-2422 B has been attributed to self-scattering, with predictions of bare grain sizes between 200 and 2000 µm.
Aims. We aim to investigate the effects of changing the maximum grain sizes in the resultant continuum and continuum polarization fractions from self-scattering for a hot and massive Class 0 disk extracted from numerical simulations of prestellar core collapse and to compare them with IRAS 16293 B observations.
Methods. We compared new and archival dust continuum and polarization observations at high resolution between 1.3 and 18 mm to a set of synthetic models. We developed a new publicly available tool to automate this process called Synthesizer. This tool is an easy-to-use program for generating synthetic observations from numerical simulations.
Results. Optical depths are in the range of 130 to 2 from 1.3 to 18 mm, respectively. Predictions of significant grain growth populations, including amax = 1000 µm, are comparable to the observations from IRAS 16293 B at all observed wavelengths. The polarization fraction produced by self-scattering reaches a maximum of approximately 0.1% at 1.3 mm for a maximum grain size of 100 µm, which is an order of magnitude lower than the grain size observed toward IRAS 16293 B.
Conclusions. From comparison of the Stokes I fluxes, we conclude that significant grain growth could be present in the young Class 0 disk IRAS 16293 B, particularly in the inner hot region (< 10 au, T > 300 K) where refractory organics evaporate. The polarization produced by self-scattering in our model is not high enough to explain the observations at 1.3 and 7 mm, and such effects as dichroic extinction and polarization reversal of elongated aligned grains remain other possible but untested scenarios.
Key words: polarization / radiative transfer / scattering / protoplanetary disks / stars: protostars
Final reduced data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/682/A56
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.