Issue |
A&A
Volume 681, January 2024
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 18 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202347090 | |
Published online | 04 January 2024 |
Forming merging double compact objects with stable mass transfer
1
Institute of Astronomy, KU Leuven, Celestijnlaan 200D, 3001 Leuven, Belgium
e-mail: annachiara.picco@kuleuven.be
2
Dept. Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, NL, The Netherlands
Received:
1
June
2023
Accepted:
9
September
2023
Context. Merging double compact objects (COs) are one of the possible endpoints of the evolution of stellar binary systems. As they represent the inferred sources of every detected gravitational wave (GW) signal, modeling their progenitors is of paramount importance both to gain a better understanding of gravitational physics and to constrain stellar evolution theory.
Aims. Stable mass transfer (MT) between a donor star and a black hole (BH) is one of the proposed tightening mechanisms to form binary BHs that merge within the lifetime of the universe. We aim to assess the potential of stable non-conservative MT to produce different pairings of compact objects including BHs, neutron stars (NSs) and white dwarfs (WDs).
Methods. We investigated the conditions (orbital periods and mass ratios) required for MT between a star and a CO to be stable and to lead to binary COs that merge within a Hubble time. We use published results on the response of the stellar radii to rapid mass loss, covering different evolutionary stages and masses. Coupled with analytical models of orbital evolution, we determined the boundary for unstable MT as well as the post-interaction properties of binaries undergoing stable MT. In addition, we investigated the impact of the angular momentum loss prescription in the resulting hardening by accounting for both the isotropic re-emission from the accretor’s vicinity and mass outflow from the second Lagrangian point.
Results. Stable MT in systems with a CO + Roche lobe-filling star, in the completely non-conservative limit of isotropic re-emission from the vicinity of the accretor, is shown to be able to form any pair of merging double COs, with the exception of WD + BH and with a limited parameter space for NS + NS. Considering the possibility of mass outflow from the Lagrangian point L2, the resulting parameter space for GW progenitors is shifted toward smaller initial mass ratios (defined as the ratio of the donor mass over the CO mass), consequently ruling out the formation of NS + NS pairs while allowing the production of merging WD + BH binaries. We compare our results with observations of single-degenerate binaries and find that the conditions for the stable MT channel to operate are present in nature. We then show that stable MT in the isotropic re-emission channel can produce merging binary BHs with mass ratios > 0.1, consistent with the majority of inferred sources of the third gravitational wave transient catalogue. Enhanced angular momentum loss from L2 increases the minimum final mass ratio achievable by stable MT.
Key words: gravitational waves / X-rays: binaries / stars: evolution / binaries: general
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.