Issue |
A&A
Volume 680, December 2023
|
|
---|---|---|
Article Number | A99 | |
Number of page(s) | 14 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202347720 | |
Published online | 15 December 2023 |
Probing the non-thermal physics of stellar bow shocks using radio observations
1
Facultad de Ciencias Exactas, UNLP, Calle 47 y 115, CP(1900), La Plata, Buenos Aires, Argentina
e-mail: jmartinez@iar.unlp.edu.ar
2
Instituto Argentino de Radioastronomía (CCT La Plata, CONICET), C.C.5, (1894) Villa Elisa, Buenos Aires, Argentina
3
Department of Space, Earth and Environment, Chalmers University of Technology, 412 96 Gothenburg, Sweden
4
Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain
Received:
13
August
2023
Accepted:
14
October
2023
Context. Massive runaway stars produce bow shocks in the interstellar medium. Recent observations revealed radio emission from a few of these objects, but the origin of this radiation remains poorly understood.
Aims. We aim to interpret this radio emission and assess under which conditions it could be either thermal (free–free) or non-thermal (synchrotron), and how to use the observational data to infer physical properties of the bow shocks.
Methods. We used an extended non-thermal emission model for stellar bow shocks for which we incorporated a consistent calculation of the thermal emission from the forward shock. We fitted this model to the available radio data (spectral and intensity maps), including largely unexplored data at low frequencies. In addition, we used a simplified one-zone model to estimate the gamma-ray emission from particles escaping the bow shocks.
Results. We can only explain the radio data from the best sampled systems (BD+43°3654 and BD+60°2522) assuming a hard electron energy distribution below ∼1 GeV, a high efficiency of conversion of (shocked) wind kinetic power into relativistic electrons (∼1 − 5%), and a relatively high magnetic-to-thermal pressure ratio of ηB ∼ 0.2. In the other systems, the interpretation of the observed flux density is more ambiguous, although a non-thermal scenario is also favoured. We also show how complementary observations at other frequencies can allow us to place stronger constraints in the model. We also estimated the gamma-ray fluxes from the HII regions around the bow shocks of BD+43°3654 and BD+60°2522, and obtained luminosities at GeV energies of ∼1033 erg s−1 and 1032 erg s−1, respectively, under reasonable assumptions.
Conclusions. Stellar bow shocks can potentially be very efficient particle accelerators. This work provides multi-wavelength predictions of their emission and demonstrates the key role of low-frequency radio observations in unveiling particle acceleration processes. The prospects of detections with next-generation observatories such as SKA and ngVLA are very promising. Finally, BD+43°3654 may be detected in GeV in the near future, while bow shocks in general may turn out to be non-negligible sources of (at least leptonic) low-energy cosmic rays.
Key words: radiation mechanisms: non-thermal / radiation mechanisms: thermal / acceleration of particles / shock waves / radio continuum: general
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.