Issue |
A&A
Volume 679, November 2023
|
|
---|---|---|
Article Number | A2 | |
Number of page(s) | 12 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202347239 | |
Published online | 30 October 2023 |
The compactness of ultra-faint dwarf galaxies: A new challenge?
Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny, Switzerland
e-mail: yves.revaz@epfl.ch
Received:
20
June
2023
Accepted:
1
August
2023
So far, numerical simulations of ultra-faint dwarf galaxies (UFDs) have failed to properly reproduce the observed size–luminosity relation. In particular, no hydrodynamical simulation run has managed to form UFDs with a half-light radius as small as 30 pc, as seen in observations of several UFD candidates. We tackle this problem by developing a simple but numerically clean and powerful method in which predictions of the stellar content of UFDs from ΛCDM cosmological hydrodynamical simulations are combined with very high-resolution dark-matter-only runs. This method allows us to trace the buildup history of UFDs and to determine the impact of the merger of building-block objects on their final size. We find that, while no UFDs more compact than 20 pc can be formed, slightly larger systems are only reproduced if all member stars originate from the same initial mini-halo. However, this imposes that (i) the total virial mass is smaller than 3 × 108 M⊙, and (ii) the stellar content prior to the end of the reionisation epoch is very compact (< 15 pc) and strongly gravitationally bound, which is a challenge for current hydrodynamical numerical simulations. If initial stellar building blocks are larger than 35 pc, the size of the UFD will extend to 80 pc. Finally, our study shows that UFDs keep strong imprints of their buildup history in the form of elongated or extended stellar halos. Those features can erroneously be interpreted as tidal signatures.
Key words: galaxies: dwarf / galaxies: formation / galaxies: evolution / methods: numerical
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.