Issue |
A&A
Volume 678, October 2023
|
|
---|---|---|
Article Number | L3 | |
Number of page(s) | 4 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202347801 | |
Published online | 10 October 2023 |
Letter to the Editor
Exploring the Red Supergiant wind kink
A Universal mass-loss concept for massive stars
Armagh Observatory and Planetarium, College Hill, BT61 9DG Armagh, Northern Ireland, UK
e-mail: jorick.vink@armagh.ac.uk
Received:
25
August
2023
Accepted:
14
September
2023
Red supergiants (RSG) are key objects in studying the evolution of massive stars and their endpoints, but uncertainties related to their underlying mass-loss mechanism have stood in the way of an appropriate framework for massive star evolution thus far. In this work, we analyse a recently uncovered empirical mass-loss “kink” feature and we highlight its similarity to hot star radiation-driven wind models and observations at the optically thin-to-thick transition point. We motivate a new RSG mass-loss prescription that depends on the Eddington factor, Γ, (including both a steep luminosity, L, dependence and an inverse steep mass, Mcur, dependence). We subsequently implement this new RSG mass-loss prescription in the stellar evolution code MESA. We find that our physically motivated mass-loss behaviour naturally reproduces the Humphreys-Davidson limit without the need for any ad hoc tweaks. It also resolves the RSG supernova “problem”. We argue that a universal behaviour that is seen for radiation-driven winds across the HR diagram, independent of the exact source of opacity, is a key feature of the evolution of the most massive stars.
Key words: stars: mass-loss / stars: massive / supergiants / stars: evolution
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.