Issue |
A&A
Volume 677, September 2023
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 23 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202347229 | |
Published online | 06 September 2023 |
Exploring the chemodynamics of metal-poor stellar populations
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
e-mail: arodrigo@camk.edu.pl
Received:
19
June
2023
Accepted:
7
July
2023
Context. Metal-poor stars are key for studying the formation and evolution of the Galaxy. Evidence of the early mergers that built up the Galaxy remains in the distributions of abundances, kinematics, and orbital parameters of its stars. Several substructures resulting from these mergers have been tentatively identified in the literature.
Aims. We conducted a global analysis of the chemodynamic properties of metal-poor stars. Our aim is to identify signs of accreted and in situ stars in different regions of the parameter space and investigate their differences and similarities.
Methods. We selected a sample of about 6600 metal-poor stars with [Fe/H] ≤ −0.8 from DR3 of the GALAH survey. We used unsupervised machine learning to separate stars in a parameter space made of two normalised orbital actions, plus [Fe/H] and [Mg/Fe], without additional a priori cuts on stellar properties.
Results. We divided the halo stars into four main groups. All groups exhibit a significant fraction of in situ contamination. Accreted stars of these groups have very similar chemical properties, except the group of stars with very retrograde orbits. This points to at most two main sources of accreted stars in the current sample, the major one related to Gaia-Enceladus and another possibly related to Thamnos and/or Sequoia. Gaia-Enceladus stars are r-process enriched at low metallicities, but a contribution of the s-process appears with increasing metallicity. A flat trend of [Eu/Mg] as a function of [Fe/H] suggests that only core-collapse supernovae contributed to r-process elements in Gaia-Enceladus.
Conclusions. To better characterise accreted stars in the low-metallicity regime, high precision abundances and guidance from chemical evolution models are needed. It is possible that the in situ contamination in samples of accreted stars has been underestimated. This can have important consequences for attempts to estimate the properties of the original systems.
Key words: Galaxy: abundances / Galaxy: halo / Galaxy: kinematics and dynamics / Galaxy: stellar content
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.