Issue |
A&A
Volume 636, April 2020
|
|
---|---|---|
Article Number | A115 | |
Number of page(s) | 29 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201937016 | |
Published online | 28 April 2020 |
Reviving old controversies: is the early Galaxy flat or round?
Investigations into the early phases of the Milky Way’s formation through stellar kinematics and chemical abundances⋆
1
GEPI, Observatoire de Paris, PSL Research University, CNRS, Place Jules Janssen, 92190 Meudon, France
e-mail: paola.dimatteo@obspm.fr
2
Sorbonne Université, CNRS UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France
Received:
29
October
2019
Accepted:
7
February
2020
We analysed a set of very metal-poor stars, for which accurate chemical abundances have been obtained as part of the ESO Large Program “First stars” in the light of the Gaia DR2 data. The kinematics and orbital properties of the stars in the sample show they probably belong to the thick disc, partially heated to halo kinematics, and to the accreted Gaia Sausage-Enceladus satellite. The continuity of these properties with stars at both higher ([Fe/H] > −2) and lower metallicities ([Fe/H] < −4.) suggests that the Galaxy at [Fe/H] ≲ −0.5 and down to at least [Fe/H] ∼ −6 is dominated by these two populations. In particular, we show that the disc extends continuously from [Fe/H] ≤ −4 (where stars with disc-like kinematics have recently been discovered) up to [Fe/H] ≥ −2, the metallicity regime of the Galactic thick disc. An “ultra metal-poor thick disc” does indeed exist, constituting the extremely metal-poor tail of the canonical Galactic thick disc, and extending the latter from [Fe/H] ∼ −0.5 up to the most metal-poor stars discovered in the Galaxy to date. These results suggest that the disc may be the main, and possibly the only, stellar population that has formed in the Galaxy at these metallicities. This would mean that the dissipative collapse that led to the formation of the old Galactic disc must have been extremely fast. We also discuss these results in the light of recent simulation efforts made to reproduce the first stages of Milky Way-type galaxies.
Key words: stars: abundances / galaxies: abundances / Galaxy: halo / Galaxy: disk / Galaxy: kinematics and dynamics / Galaxy: evolution
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.