Issue |
A&A
Volume 677, September 2023
|
|
---|---|---|
Article Number | A52 | |
Number of page(s) | 17 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202346796 | |
Published online | 04 September 2023 |
Formation of Hε in the solar atmosphere
1
Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
2
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
e-mail: kilian.krikova@astro.uio.no
Received:
2
May
2023
Accepted:
4
July
2023
Context. In the solar spectrum, the Balmer series line Hε is a weak blend on the wing of Ca II H. Recent high-resolution Hε spectroheliograms reveal a reversed granulation pattern and in some cases, even unique structures. It is apparent that Hε could potentially be a useful diagnostic tool for the lower solar atmosphere.
Aims. Our aim is to understand how Hε is formed in the quiet Sun. In particular, we consider the particular physical mechanism that sets its source function and extinction, how it is formed in different solar structures, and why it is sometimes observed in emission.
Methods. We used a 3D radiative magnetohydrodynamic (MHD) simulation that accounts for non-equilibrium hydrogen ionization, run with the Bifrost code. To synthesize Hε and Ca II H spectra, we made use of the RH code, which was modified to take into account the non-equilibrium hydrogen ionization. To determine the dominant terms in the Hε source function, we adopted a multi-level description of the source function. Making use of the synthetic spectra and simulation, we studied the contribution function to the relative line absorption or emission and compared it with atmospheric quantities at different locations.
Results. Our multi-level source function description suggests that the Hε source function is dominated by interlocking, with the dominant interlocking transition being through the ground level, populating the upper level of Hε via the Lyman series. This makes the Hε source function partly sensitive to temperature. The Hε extinction is set by Lyman-α. In some cases, this temperature dependence gives rise to Hε emission, indicating heating. The typical absorption profiles show reversed granulation and the Hε line core reflects mostly the Ca II H background radiation.
Conclusions. Synthetic Hε spectra can reproduce quiet Sun observations quite well. High-resolution observations reveal that Hε is not just a weak absorption line. Regions with Hε in emission are especially interesting to detect small-scale heating events in the lower solar atmosphere, such as Ellerman bombs. Thus, Hε can be an important new diagnostic tool for studies of heating in the solar atmosphere, augmenting the diagnostic potential of Ca II H when observed simultaneously.
Key words: radiative transfer / line: formation / Sun: photosphere / Sun: chromosphere
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.