Issue |
A&A
Volume 676, August 2023
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 23 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202245308 | |
Published online | 21 August 2023 |
CODEX: Role of velocity substructure in the scaling relations of galaxy clusters⋆
1
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
e-mail: sanna.damsted@helsinki.fi
2
IRAP, Université de Toulouse, CNRS, UPS, CNES, 31028 Toulouse, France
3
Institut d’Astrophysique de Paris, UMR 7095: CNRS & Sorbonne Université, 75014 Paris, France
4
MPE, Giessenbachstr. 1, Garching 85748, Germany
5
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
Received:
27
October
2022
Accepted:
29
June
2023
Context. The use of galaxy clusters as cosmological probes relies on a detailed understanding of their properties. They define cluster selection and ranking linked to a cosmologically significant cluster mass function. Previous studies have employed small samples of clusters, concentrating on achieving the first calibrations of cluster properties with mass, while the diversity of cluster properties has been revealed via detailed studies.
Aims. The large spectroscopic follow-up on the CODEX cluster sample with SDSS and NOT enables a detailed study of hundreds of clusters, lifting the limitations of previous samples. We aim to update the spectroscopic cluster identification of CODEX by running the spectroscopic group finder on the follow-up spectroscopy results and connecting the dynamical state of clusters to their scaling relations.
Methods. We implemented a reproducible spectroscopic membership determination and cleaning procedures, based on the redMaPPer membership, running the spectroscopic group finder on the follow-up spectroscopy results and cleaning the membership for spectroscopic outliers. We applied the Anderson-Darling test for velocity substructure and analysed its influence on the scaling relations. We also tested the effect of the X-ray-to-optical centre offset on the scaling relations.
Results. We report on the scaling relations between richness, X-ray luminosity, and velocity dispersion for a complete sample of clusters with at least 15 members. Clusters with velocity substructure exhibit enhanced velocity dispersion for a given richness and are characterized by 2.5 times larger scatter. Clusters that have a strong offset in X-ray-to-optical centres have comparable scaling relations as clusters with substructure. We demonstrate that there is a consistency in the parameters of the scaling relations for the low- and high-richness galaxy clusters. Splitting the clusters by redshift, we note a decrease in scatter with redshift in all scaling relations. We localize the redshift range where a high scatter is observed to z < 0.15, which is in agreement with the literature results on the scatter. We note that the increase in scatter for both high- and low-luminosity clusters is z < 0.15, suggesting that both cooling and the resulting active galactic nucleus feedback are at the root of this scatter.
Key words: catalogs / galaxies: clusters: general / X-rays: galaxies: clusters / large-scale structure of Universe
The data described in Tables A.1–A.4 are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/676/A127
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.