Issue |
A&A
Volume 673, May 2023
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 9 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202346021 | |
Published online | 26 April 2023 |
Forming super-Mercuries: Role of stellar abundances
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg, Germany
e-mail: mah@mpia.de
Received:
30
January
2023
Accepted:
20
March
2023
Rocky exoplanets with bulk iron mass fraction of more than 60%, known as super-Mercuries, appear to be preferentially hosted by stars with higher iron mass fraction than that of the Sun. It is unclear whether these iron-rich planets can form in the disc or whether giant impacts are necessary for their formation. Here, we investigate the formation of super-Mercuries in their natal protoplanetary discs by taking into account their host stars’ abundances (Fe, Mg, Si, and S). We employed a disc evolution model which includes the growth, drift, evaporation, and recondensation of pebbles to compute the pebble iron mass fraction. The recondensation of outwardly drifting iron vapour near the iron evaporation front is the key mechanism that facilitates an increase in the pebble iron mass fraction. We also simulated the growth of planetary seeds around the iron evaporation front using a planet formation model which includes pebble accretion and planet migration and we computed the final composition of the planets. Our simulations were able to reproduce the observed iron compositions of the super-Mercuries, provided that all the iron in the disc are locked in pure Fe grains and that the disc viscosity is low (α ~ 10−4). The combined effects of slow orbital migration of planets and long retention time of iron vapour in low-viscosity discs makes it easier to form iron-rich planets. Furthermore, we find that decreasing the stellar Mg/Si ratio results in an increase in the iron mass fraction of the planet due to a reduction in the abundance of Mg2SiO4, which has a very similar condensation temperature as iron, in the disc. Our results imply that super-Mercuries are more likely to form around stars with low Mg/Si (≲ 1), in agreement with observational data.
Key words: planets and satellites: composition / planets and satellites: formation / protoplanetary disks / stars: abundances
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model.
Open access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.