Issue |
A&A
Volume 673, May 2023
|
|
---|---|---|
Article Number | A47 | |
Number of page(s) | 26 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202244753 | |
Published online | 03 May 2023 |
Numerical dependencies of the galactic dynamo in isolated galaxies with SPH
Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, 0315 Oslo, Norway
e-mail: robertwi@astro.uio.no; sijing.shen@astro.uio.no
Received:
16
August
2022
Accepted:
27
February
2023
Simulating and evolving magnetic fields within global galaxy simulations provides a large tangled web of numerical complexity due to the vast amount of physical processes involved. Understanding the numerical dependencies that act on the galactic dynamo is a crucial step in determining what resolution and conditions are required to properly capture the magnetic fields observed in galaxies. Here, we present an extensive study on the numerical dependencies of the galactic dynamo in isolated spiral galaxies using smoothed particle magnetohydrodynamics. We performed 53 isolated spiral galaxy simulations with different initial setups, feedback, resolution, Jeans floor, and dissipation parameters. The results show a strong mean-field dynamo occurring in the spiral-arm region of the disk, likely produced by the classical alpha-omega dynamo or the recently described gravitational instability dynamo. The inclusion of feedback is seen to work in both a destructive and positive fashion for the amplification process. Destructive interference for the amplification occurs due to the breakdown of filament structure in the disk, the increase of turbulent diffusion, and the ejection of magnetic flux from the central plane to the circumgalactic medium. The positive effect of feedback is the increase in vertical motions and the turbulent fountain flows that develop, showing a high dependence on the small-scale vertical structure and the numerical dissipation within the galaxy. Galaxies with an effective dynamo saturate their magnetic energy density at levels between 10 and 30% of the thermal energy density. The density-averaged numerical Prandtl number is found to be below unity throughout the galaxy for all our simulations, with an increasing value with radius. Assuming a turbulent injection length of 1 kpc, the numerical magnetic Reynolds number is within the range of Remag = 10 − 400, indicating that some regions are below the levels required for the small-scale dynamo (Remag, crit = 30 − 2700) to be active.
Key words: galaxies: evolution / galaxies: magnetic fields / methods: numerical / galaxies: spiral / dynamo / magnetohydrodynamics (MHD)
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.