Issue |
A&A
Volume 672, April 2023
|
|
---|---|---|
Article Number | A98 | |
Number of page(s) | 8 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202345924 | |
Published online | 06 April 2023 |
The co-evolution of supermassive black holes and galaxies in luminous AGN over a wide range of redshift
Instituto de Fisica de Cantabria (CSIC-Universidad de Cantabria), Avenida de los Castros, 39005 Santander, Spain
e-mail: gmountrichas@gmail.com
Received:
17
January
2023
Accepted:
20
February
2023
It is well known that supermassive black holes (SMBHs) and their host galaxies co-evolve. A manifestation of this co-evolution is the correlation that has been found between the SMBH mass, MBH, and the galaxy bulge or stellar mass, M*. The cosmic evolution of this relation, though, is still a matter of debate. In this work, we examine the MBH − M* relation, using 687 X-ray luminous (median log [LX,2−10 keV(erg s−1)] = 44.3), broad-line active galactic nuclei (AGN), at 0.2 < z < 4.0 (median z ≈ 1.4) that lie in the XMM-XXL field. Their MBH and M* range from 7.5 < log [MBH (M⊙)] < 9.5 and 10 < log [M*(M⊙)] < 12, respectively. Most of the AGN live in star-forming galaxies and their Eddington ratios range from 0.01 to 1, with a median value of 0.06. Our results show that MBH and M* are correlated (r = 0.47 ± 0.21, averaged over different redshift intervals). Our analysis also shows that the mean ratio of the MBH and M* does not evolve with redshift, at least up to z = 2 and has a value of log(MBH/M*)= − 2.44. The majority of the AGN (75%) are in a SMBH mass growth-dominant phase. In these systems, the MBH − M* correlation is weaker and their M* tends to be lower (for the same MBH) compared to systems that are in a galaxy mass growth phase. Our findings suggest that the growth of black hole mass occurs first, while the early stellar mass assembly may not be so efficient.
Key words: galaxies: active / galaxies: evolution / quasars: supermassive black holes / galaxies: star formation / X-rays: galaxies
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.