Issue |
A&A
Volume 672, April 2023
|
|
---|---|---|
Article Number | A22 | |
Number of page(s) | 32 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202245145 | |
Published online | 23 March 2023 |
The IACOB project
VIII. Searching for empirical signatures of binarity in fast-rotating O-type stars⋆
1
Université de Liège, Quartier Agora (B5c, Institut d’Astrophysique et de Géophysique), Allée du 6-Août 19c, 4000 Sart Tilman, Liège, Belgium
e-mail: mbritavskiy@uliege.be
2
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
3
Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
4
Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, campus ESAC, 28692 Villanueva de la Cañada, Madrid, Spain
5
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
6
Departamento de Astrofísica y Física de la Atmósfera, Universidad Complutense de Madrid, 28040 Madrid, Spain
7
Department of Physics, University of Auckland, Private Bag, 92019 Auckland, New Zealand
Received:
5
October
2022
Accepted:
1
February
2023
Context. The empirical distribution of projected rotational velocities (v sin i) in massive O-type stars is characterised by a dominant slow velocity component and a tail of fast rotators. It has been proposed that binary interaction plays a dominant role in the formation of this tail.
Aims. We perform a complete and homogeneous search for empirical signatures of binarity in a sample of 54 fast-rotating stars with the aim of evaluating this hypothesis. This working sample has been extracted from a larger sample of 415 Galactic O-type stars that covers the full range of v sin i values.
Methods. We used new and archival multi-epoch spectra in order to detect spectroscopic binary systems. We complemented this information with Gaia proper motions and TESS photometric data to aid in the identification of runaway stars and eclipsing binaries, respectively. We also benefitted from additional published information to provide a more complete overview of the empirical properties of our working sample of fast-rotating O-type stars.
Results. The identified fraction of single-lined spectroscopic binary (SB1) systems and apparently single stars among the fast-rotating sample is ∼18% and ∼70%, respectively. The remaining 12% correspond to four secure double-line spectroscopic binaries (SB2) with at least one of the components having a v sin i > 200 km s−1 (∼8%), along with a small sample of 2 stars (∼4%) for which the SB2 classification is doubtful: these could actually be single stars with a remarkable line-profile variability. When comparing these percentages with those corresponding to the slow-rotating sample, we find that our sample of fast rotators is characterised by a slightly larger percentage of SB1 systems (∼18% vs. ∼13%) and a considerably smaller fraction of clearly detected SB2 systems (8% vs. 33%). Overall, there seems to be a clear deficit of spectroscopic binaries (SB1+SB2) among fast-rotating O-type stars (∼26% vs. ∼46%). On the contrary, the fraction of runaway stars is significantly higher in the fast-rotating domain (∼33–50%) than among those stars with v sin i < 200 km s−1. Lastly, almost 65% of the apparently single fast-rotating stars are runaways. As a by-product, we discovered a new over-contact SB2 system (HD 165921) and two fast-rotating SB1 systems (HD 46485 and HD 152200) Also, we propose HD 94024 and HD 12323 (both SB1 systems with a v sin i < 200 km s−1) as candidates for hosting a quiescent stellar-mass black hole.
Conclusions. Our empirical results seem to be in good agreement with the assumption that the tail of fast-rotating O-type stars (with v sin i > 200 km s−1) is mostly populated by post-interaction binary products. In particular, we find that the final statistics of identified spectroscopic binaries and apparent single stars are in good agreement with newly computed predictions obtained with the binary population synthesis code BPASS and earlier estimations obtained in previous studies.
Key words: stars: early-type / stars: rotation / stars: oscillations / stars: fundamental parameters / techniques: spectroscopic / binaries: spectroscopic
Individual RV measurements for each star and RVPP estimates are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/672/A22
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.