Issue |
A&A
Volume 665, September 2022
|
|
---|---|---|
Article Number | A120 | |
Number of page(s) | 41 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202243548 | |
Published online | 20 September 2022 |
A detailed analysis of the Gl 486 planetary system
1
Centro de Astrobiología (CSIC-INTA), ESAC,
Camino bajo del castillo s/n,
28692
Villanueva de la Cañada, Madrid, Spain
e-mail: caballero@cab.inta-csic.es
2
Centro de Astrobiología (CSIC-INTA),
Carretera de Ajalvir km 4,
28850
Torrejón de Ardoz, Madrid, Spain
3
Department of Astronomy and Astrophysics, University of Chicago,
5640 South Ellis Avenue,
Chicago, IL
60637, USA
4
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg, Germany
5
Departament of Astronomy, Sofijski universitet “Sv. Kliment Ohridski”,
5 James Bourchier Boulevard,
1164
Sofia, Bulgaria
6
Louisiana State University,
202 Nicholson Hall,
Baton Rouge, LA
70803, USA
7
Universität Zürich, Institute for Computational Science,
Winterthurerstrasse 190,
CH-8057,
Zürich, Switzerland
8
Universitäts-Sternwarte, Ludwig-Maximilians-Universität München,
Scheinerstrasse 1,
81679
München, Germany
9
Exzellenzcluster Origins,
Boltzmannstrasse 2,
85748
Garching, Germany
10
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg,
Königstuhl 12,
69117
Heidelberg, Germany
11
Instituto de Astrofísica de Andalucía (CSIC),
Glorieta de la Astronomía s/n,
18008
Granada, Spain
12
Departamento de Física Teórica y del Cosmos, Universidad de Granada,
18071
Granada, Spain
13
The CHARA Array of Georgia State University, Mount Wilson Observatory,
Mount Wilson, CA
91203, USA
14
Instituto de Astrofísica de Canarias (IAC),
38200
La Laguna, Tenerife, Spain
15
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna, Tenerife, Spain
16
Astrophysics Group, Department of Physics & Astronomy, University of Exeter,
Stocker Road,
Exeter
EX4 4QL, UK
17
Institut für Astrophysik und Geophysik, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1,
37077
Göttingen, Germany
18
AstroLAB IRIS, Provinciaal Domein “De Palingbeek”,
Verbrande-molenstraat 5,
8902
Zillebeke, Ieper, Belgium
19
Astronomy Department, University of Michigan,
Ann Arbor, MI
48109, USA
20
Space Telescope Science Institute,
3700 San Martin Drive,
Baltimore, MD
21218, USA
21
Thüringer Landessternwarte Tautenburg,
Sternwarte 5,
07778
Tautenburg, Germany
22
Institut de Ciències de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Barcelona, Spain
23
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
24
European Southern Observatory,
Casilla
19001
Santiago 19, Chile
25
Institut de Planetologie et d’Astrophysique de Grenoble,
Grenoble
38058, France
26
Department of Physics and Astronomy, The University of North Carolina at Chapel Hill,
Chapel Hill, NC
27599, USA
27
Departamento de Física de la Tierra y Astrofísica and IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid,
28040
Madrid, Spain
28
Centro Astronómico Hispano en Andalucía, Observatorio de Calar Alto, Sierra de los Filabres,
04550
Gérgal, Almería, Spain
29
Hamburger Sternwarte, Universität Hamburg,
Gojenbergsweg 112,
21029
Hamburg, Germany
30
Centre for Earth Evolution and Dynamics, Department of Geo-sciences, Universitetet i Oslo,
Sem Sœlands vei 2b,
0315
Oslo, Norway
31
Department of Physics, Ariel University,
Ariel
40700, Israel
32
Department of Astrophysical Sciences, Princeton University,
4 Ivy Lane,
Princeton, NJ
08540, USA
33
Vereniging Voor Sterrenkunde,
Oude Bleken 12,
2400
Mol, Belgium
34
Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven,
Celestijnenlaan 200B, bus 2400,
3001
Leuven, Belgium
35
Lowell Observatory,
1400 W. Mars Hill Road,
Flagstaff, AZ
86001, USA
36
Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center,
Greenbelt, MD
20771, USA
Received:
14
March
2022
Accepted:
7
June
2022
Context. The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R⊕ and 3.0 M⊕. It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets.
Aims. To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground.
Methods. We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis.
Results. From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at θLDD = 0.390 ± 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R* = 0.339 ± 0.015 R⊕. We also measure a stellar rotation period at Prot = 49.9 ± 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble/STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at Rp = 1.343−0.062+0.063 R⊕ and Mp = 3.00−0.12+0.13 M⊕, with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope (Webb) observations.
Key words: planetary systems / techniques: photometric / techniques: radial velocities / stars: individual: Gl 486 / stars: late-type
© J. A. Caballero et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.