Issue |
A&A
Volume 665, September 2022
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 19 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202141640 | |
Published online | 01 September 2022 |
Transit least-squares survey
IV. Earth-like transiting planets expected from the PLATO mission
1
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen, Germany
e-mail: heller@mps.mpg.de
2
Institute of Planetary Research, German Aerospace Center,
Rutherfordstrasse 2,
12489
Berlin, Germany
e-mail: jan-vincent.harre@dlr.de
3
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité,
5 place Jules Janssen,
92195
Meudon, France
e-mail: reza.samadi@obspm.fr
Received:
25
June
2021
Accepted:
20
June
2022
In its long-duration observation phase, the PLATO satellite (scheduled for launch in 2026) will observe two independent, non-overlapping fields, nominally one in the northern hemisphere and one in the southern hemisphere, for a total of four years. The exact duration of each pointing will be determined two years before launch. Previous estimates of PLATO’s yield of Earth-sized planets in the habitable zones (HZs) around solar-type stars ranged between 6 and 280. We use the PLATO Solar-like Light curve Simulator (PSLS) to simulate light curves with transiting planets around bright (mV ≤ 11) Sun-like stars at a cadence of 25 s, roughly representative of the >15 000 targets in PLATO’s high-priority P1 sample (mostly F5-K7 dwarfs and subdwarfs). Our study includes light curves generated from synchronous observations of 6, 12, 18, and 24 of PLATO’s 12 cm aperture cameras over both 2 and 3yr of continuous observations. Automated detrending is done with the Wotan software, and post-detrending transit detection is performed with the transit least-squares (TLS) algorithm. Light curves combined from 24 cameras yield true positive rates (TPRs) near unity for planets ≥1.2 R⊕ with two transits. If a third transit is in the light curve, planets as small as 1 R⊕ are recovered with TPR ~ 100%. We scale the TPRs with the expected number of stars in the P1 sample and with modern estimates of the exoplanet occurrence rates and predict the detection of planets with 0.5 R⊕ ≤ Rp ≤ 1.5 R⊕ in the HZs around F5-K7 dwarf stars. For the long-duration observation phase (2yr + 2yr) strategy we predict 11–34 detections, and for the (3 yr + 1 yr) strategy we predict 8–25 discoveries. These estimates neglect exoplanets with monotransits, serendipitous detections in stellar samples P2–P5, a dedicated removal of systematic effects, and a possible bias of the P1 sample toward brighter stars and high camera coverage due to noise requirements. As an opposite effect, Earth-sized planets might typically exhibit transits around P1 sample stars shallower than we have assumed since the P1 sample will be skewed toward spectral types earlier than the Sun-like stars assumed in our simulations. Moreover, our study of the effects of stellar variability on shallow transits of Earth-like planets illustrates that our estimates of PLATO’s planet yield, which we derive using a photometrically quiet star similar to the Sun, must be seen as upper limits. In conclusion, PLATO’s detection of about a dozen Earth-sized planets in the HZs around solar-type stars will mean a major contribution to this as yet poorly sampled part of the exoplanet parameter space with Earth-like planets.
Key words: methods: data analysis / occultations / planets and satellites: detection / stars: solar-type / techniques: photometric
© R. Heller et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.