Issue |
A&A
Volume 659, March 2022
|
|
---|---|---|
Article Number | A177 | |
Number of page(s) | 8 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202142833 | |
Published online | 25 March 2022 |
V456 Cyg: An eclipsing binary with tidally perturbed g-mode pulsations
1
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
e-mail: timothy.vanreeth@kuleuven.be
2
Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
Received:
3
December
2021
Accepted:
12
January
2022
Context. Many well-known bright stars have been observed by the ongoing transiting exoplanet survey satellite (TESS) space mission. For several of them, these new data reveal previously unobserved variability, such as tidally perturbed pulsations in close binary stars.
Aims. Using newly detected gravity-mode (g-mode) pulsations in V456 Cyg, we aim to determine the global stellar properties of this short-period eclipsing binary and evaluate the interaction between these pulsations and the tides.
Methods. We model the binary orbit and determine the physical properties of the component stars using the TESS photometry and published spectroscopy. We then measure the pulsation frequencies from the residuals of the light curve fit using iterative prewhitening, and analyse them to determine the global asteroseismic stellar parameters. We evaluate the pulsation parameters as a function of the orbital phase.
Results. We find that the pulsations belong to the secondary component of V456 Cyg and that this star likely has a uniform radial rotation profile, synchronous (νrot = 1.113 (14) d−1) with the binary orbit (νorb = 1.122091 (8) d−1). The observed g modes are amplified by almost a factor three in the stellar hemisphere facing the primary. We present evidence that this is caused by tidal perturbation of the pulsations, with the mode coupling being strongly affected.
Conclusions. V456 Cyg is only the second object for which tidally perturbed high-order g-mode pulsations are identified, after π5 Ori. This opens up new opportunities for tidal g-mode asteroseismology, as it demonstrates another avenue in which g modes and tides can interact with each other.
Key words: asteroseismology / binaries: eclipsing / stars: oscillations / stars: rotation / stars: individual: V456 Cyg
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.