Issue |
A&A
Volume 659, March 2022
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 24 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202141702 | |
Published online | 11 March 2022 |
Survey of Surveys
I. The largest compilation of radial velocities for the Galaxy⋆,⋆⋆
1
INAF – Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
e-mail: maria.tsantaki@inaf.it
2
Space Science Data Centre – ASI, Via del Politecnico SNC, 00133 Roma, Italy
3
INAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, Roma, Italy
4
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
5
Departamento de Astrofísica, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
Received:
2
July 2021
Accepted:
4
October 2021
Context. In the present-day panorama of large spectroscopic surveys, the amount, diversity, and complexity of the available data continuously increase. The overarching goal of studying the formation and evolution of our Galaxy is hampered by the heterogeneity of instruments, selection functions, analysis methods, and measured quantities.
Aims. We present a comprehensive catalogue, the Survey of Surveys (SoS), built by homogeneously merging the radial velocity (RV) determinations of the largest ground-based spectroscopic surveys to date, such as APOGEE, GALAH, Gaia-ESO, RAVE, and LAMOST, using Gaia as a reference. This pilot study serves to prove the concept and to test the methodology that we plan to apply in the future to the stellar parameters and abundance ratios as well.
Methods. We have devised a multi-staged procedure that includes: (i) the cross match between Gaia and the spectroscopic surveys using the official Gaia cross-match algorithm, (ii) the normalisation of uncertainties using repeated measurements or the three-cornered hat method, (iii) the cross calibration of the RVs as a function of the main parameters on which depend (magnitude, effective temperature, surface gravity, metallicity, and signal-to-noise ratio) to remove trends and zero point offsets, and (iv) the comparison with external high-resolution samples, such as the Gaia RV standards and the Geneva-Copenhagen survey, to validate the homogenisation procedure and to calibrate the RV zero-point of the SoS catalogue.
Results. We provide the largest homogenised RV catalogue to date, containing almost 11 million stars, of which about half come exclusively from Gaia and half in combination with the ground-based surveys. We estimate the accuracy of the RV zero-point to be about 0.16−0.31 km s−1 and the RV precision to be in the range 0.05−1.50 km s−1 depending on the type of star and on its survey provenance. We validate the SoS RVs with open clusters from a high resolution homogeneous samples and provide the systemic velocity of 55 individual open clusters. Additionally, we provide median RVs for 532 clusters recently discovered by Gaia data.
Conclusions. The SoS is publicly available and ready to be applied to various research projects, such as the study of star clusters, Galactic archaeology, stellar streams, or the characterisation of planet-hosting stars, to name a few. We also plan to include survey updates and more data sources in future versions of the SoS.
Key words: catalogs / methods: statistical / stars: fundamental parameters / techniques: radial velocities
The catalogue and the full Table 10 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/659/A95
The SoS catalogue of RVs and the re-calibrated survey catalogues are available at http://gaiaportal.ssdc.asi.it/SoS. We recommend to the users of the SoS to include the respective references of the individual surveys we used for this work in their acknowledgements.
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.