Issue |
A&A
Volume 658, February 2022
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 12 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202142002 | |
Published online | 27 January 2022 |
Energetic proton back-precipitation onto the solar atmosphere in relation to long-duration gamma-ray flares
1
Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK
e-mail: ahutchinson3@uclan.ac.uk
2
Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
3
Department of Physics, Catholic University of America, Washington, DC, USA
4
Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA
Received:
11
August
2021
Accepted:
6
November
2021
Context. Gamma-ray emission during long-duration gamma-ray flare (LDGRF) events is thought to be caused mainly by > 300 MeV protons interacting with the ambient plasma at or near the photosphere. Prolonged periods of the gamma-ray emission have prompted the suggestion that the source of the energetic protons is acceleration at a coronal mass ejection (CME)-driven shock, followed by particle back-precipitation onto the solar atmosphere over extended times.
Aims. We study the latter hypothesis using test particle simulations, which allow us to investigate whether scattering associated with turbulence aids particles in overcoming the effect of magnetic mirroring, which impedes back-precipitation by reflecting particles as they travel sunwards.
Methods. The instantaneous precipitation fraction, P, the proportion of protons that successfully precipitate for injection at a fixed height, ri, is studied as a function of scattering mean free path, λ and ri. Upper limits to the total precipitation fraction, P̅, were calculated for eight LDGRF events for moderate scattering conditions (λ = 0.1 AU).
Results. We find that the presence of scattering helps back-precipitation compared to the scatter-free case, although at very low λ values outward convection with the solar wind ultimately dominates. For eight LDGRF events, due to strong mirroring, P̅ is very small, between 0.56 and 0.93% even in the presence of scattering.
Conclusions. Time-extended acceleration and large total precipitation fractions, as seen in the observations, cannot be reconciled for a moving shock source according to our simulations. Therefore, it is not possible to obtain both long duration γ ray emission and efficient precipitation within this scenario. These results challenge the CME shock source scenario as the main mechanism for γ ray production in LDGRFs.
Key words: astroparticle physics / Sun: coronal mass ejections (CMEs) / Sun: particle emission / Sun: X-rays, gamma rays / turbulence
© A. Hutchinson et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.