Issue |
A&A
Volume 657, January 2022
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 17 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202142465 | |
Published online | 19 January 2022 |
Letter to the Editor
Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits
1
Max Planck Institute for extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Germany
2
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
3
Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
4
1st Institute of Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
5
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
6
Universidade de Lisboa – Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal
7
Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal
8
European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany
9
European Southern Observatory, Casilla, 19001 Santiago 19, Chile
10
Sterrewacht Leiden, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
11
Departments of Physics and Astronomy, Le Conte Hall, University of California, Berkeley, CA 94720, USA
12
CENTRA – Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, 1049-001 Lisboa, Portugal
13
Department of Astrophysical & Planetary Sciences, JILA, Duane Physics Bldg., 2000 Colorado Ave, University of Colorado, Boulder, CO 80309, USA
14
CERN, 1 Esplanade des Particules, Genève 23, 1211, Switzerland
15
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA
16
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
17
Gemini Observatory/NSF’s- NOIRLab, 670 N. A’ohoku Place, Hilo, HI 96720, USA
Received:
17
October
2021
Accepted:
18
November
2021
Stars orbiting the compact radio source Sgr A* in the Galactic Center serve as precision probes of the gravitational field around the closest massive black hole. In addition to adaptive optics-assisted astrometry (with NACO/VLT) and spectroscopy (with SINFONI/VLT, NIRC2/Keck and GNIRS/Gemini) over three decades, we have obtained 30–100 μas astrometry since 2017 with the four-telescope interferometric beam combiner GRAVITY/VLTI, capable of reaching a sensitivity of mK = 20 when combining data from one night. We present the simultaneous detection of several stars within the diffraction limit of a single telescope, illustrating the power of interferometry in the field. The new data for the stars S2, S29, S38, and S55 yield significant accelerations between March and July 2021, as these stars pass the pericenters of their orbits between 2018 and 2023. This allows for a high-precision determination of the gravitational potential around Sgr A*. Our data are in excellent agreement with general relativity orbits around a single central point mass, M• = 4.30 × 106 M⊙, with a precision of about ±0.25%. We improve the significance of our detection of the Schwarzschild precession in the S2 orbit to 7σ. Assuming plausible density profiles, the extended mass component inside the S2 apocenter (≈0.23″ or 2.4 × 104 RS) must be ≲3000 M⊙ (1σ), or ≲0.1% of M•. Adding the enclosed mass determinations from 13 stars orbiting Sgr A* at larger radii, the innermost radius at which the excess mass beyond Sgr A* is tentatively seen is r ≈ 2.5″ ≥ 10× the apocenter of S2. This is in full harmony with the stellar mass distribution (including stellar-mass black holes) obtained from the spatially resolved luminosity function.
Key words: black hole physics / instrumentation: interferometers / Galaxy: center
© GRAVITY Collaboration 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.