Issue |
A&A
Volume 656, December 2021
|
|
---|---|---|
Article Number | A148 | |
Number of page(s) | 21 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/202141616 | |
Published online | 15 December 2021 |
Mechanisms for gas-phase molecular formation of neutral formaldehyde (H2CO) in cold astrophysical regions
1
Departamentos de Física & Matemáticas y de Ingeniería Automática, Universidad de Alcalá,
28805
Alcalá de Henares,
Madrid,
Spain
2
Departamento de Biología de Sistemas, Instituto de Investigación Química “Andrés del Rio” (IQAR), Universidad de Alcalá,
28805
Alcalá de Henares,
Madrid,
Spain
e-mail: juan.ramal@edu.uah.es; cesar.menor@uah.es
3
NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology,
Atlanta,
GA
33000,
USA
4
Department of Chemistry & Biochemistry, University of Mississippi,
University,
MS
38677,
USA
e-mail: r410@olemiss.edu
Received:
23
June
2021
Accepted:
27
August
2021
Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H2CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood.
Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H2CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs).
Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes.
Results. The most probable reactions that produce H2CO in cold astrophysical regions are: 1CH2 + ⋅3O2 →1H2CO + O⋅(3P) in DMCs, ⋅3CH2 + ⋅3O2 →1H2CO + ⋅O(3P) in DCDMCs, and ⋅CH3 + ⋅O(3P) →1H2CO + ⋅H in region III, ⋅CH3 +⋅O(1D) →1H2CO + ⋅H in region II, and 1CH2 + ⋅3O2 →1H2CO + ⋅O(3P) in region I belonging to CELMPs.
Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H2CO in cold regions for the gas-phase are CH2(a1A1), and ⋅CH2(X3B1) combined with ⋅O2(3Σg) and ⋅CH3(2A”) + ⋅O(3P) / O(1D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H2CO molecular formation.
Key words: astrobiology / astrochemistry / ISM: molecules / molecular processes
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.