Issue |
A&A
Volume 656, December 2021
|
|
---|---|---|
Article Number | A65 | |
Number of page(s) | 18 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202140865 | |
Published online | 03 December 2021 |
Dynamical effects of the radiative stellar feedback on the H I-to-H2 transition
LERMA, Observatoire de Paris, PSL University, CNRS, Sorbonne Université,
92190
Meudon,
France
e-mail: vincent.maillard@observatoiredeparis.psl.eu
Received:
23
March
2021
Accepted:
11
September
2021
Context. The atomic-to-molecular hydrogen (H/H2) transition has been extensively studied as it controls the fraction of gas in a molecular state in an interstellar cloud. This fraction is linked to star-formation by the Schmidt–Kennicutt law. While theoretical estimates of the column density of the H I layer have been proposed for static photodissociation regions (PDRs), Herschel and well-resolved Atacama Large Millimeter Array observations have revealed dynamical effects in star forming regions, caused by the process of photoevaporation.
Aims. We extend the analytic study of the H/H2 transition to include the effects of the propagation of the ionization front, in particular in the presence of photoevaporation at the walls of blister H II regions, and we find its consequences on the total atomic hydrogen column density at the surface of clouds in the presence of an ultraviolet field, and on the properties of the H/H2 transition.
Methods. We solved semi-analytically the differential equation giving the H2 column density profile by taking into account H2 formation on grains, H2 photodissociation, and the ionization front propagation dynamics modeled as advection of the gas through the ionization front.
Results. Taking this advection into account reduces the width of the atomic region compared to static models. The atomic region may disappear if the ionization front velocity exceeds a certain value, leading the H/H2 transition and the ionization front to merge. For both dissociated and merged configurations, we provide analytical expressions to determine the total H I column density. Our results take the metallicity into account. Finally, we compared our results to observations of PDRs illuminated by O-stars, for which we conclude that the dynamical effects are strong, especially for low-excitation PDRs.
Key words: galaxies: ISM / ISM: clouds / ISM: general / ISM: kinematics and dynamics / photon-dominated region / stars: formation
© V. Maillard et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.