Issue |
A&A
Volume 655, November 2021
|
|
---|---|---|
Article Number | A54 | |
Number of page(s) | 28 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202040140 | |
Published online | 19 November 2021 |
Theoretical and numerical perspectives on cosmic distance averages
1
Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France
e-mail: michel-andres.breton@lam.fr
2
Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
e-mail: pierre.fleury@uam.es
Received:
16
December
2020
Accepted:
15
August
2021
The interpretation of cosmological observations relies on a notion of an average Universe, which is usually considered as the homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) model. However, inhomogeneities may statistically bias the observational averages with respect to FLRW, notably for distance measurements, due to a number of effects such as gravitational lensing and redshift perturbations. In this article, we review the main known theoretical results on average distance measures in cosmology, based on second-order perturbation theory, and we fill in some of their gaps. We then comprehensively test these theoretical predictions against ray tracing in a high-resolution dark-matter N-body simulation. This method allows us to describe the effect of small-scale inhomogeneities deep into the non-linear regime of structure formation on light propagation up to z = 10. We find that numerical results are in remarkably good agreement with theoretical predictions in the limit of super-sample variance. No unexpectedly large bias originates from very small scales, whose effect is fully encoded in the non-linear power spectrum. Specifically, the directional average of the inverse amplification and the source-averaged amplification are compatible with unity; the change in area of surfaces of constant cosmic time is compatible with zero; the biases on other distance measures, which can reach slightly less than 1% at high redshift, are well understood. As a side product, we also confront the predictions of the recent finite-beam formalism with numerical data and find excellent agreement.
Key words: large-scale structure of Universe / distance scale / cosmology: theory / methods: numerical
© M.-A. Breton and P. Fleury 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.