Issue |
A&A
Volume 652, August 2021
|
|
---|---|---|
Article Number | L4 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202141456 | |
Published online | 04 August 2021 |
Letter to the Editor
Heating of the solar chromosphere in a sunspot light bridge by electric currents
1
Udaipur Solar Observatory, Physical Research Laboratory, Dewali Badi Road, Udaipur, 313001 Rajasthan, India
e-mail: rlouis@prl.res.in
2
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
3
National Solar Observatory (NSO), 3665 Discovery Drive, Boulder, CO 80303, USA
4
Department of Physics and Astronomy, California State University, Northridge (CSUN), Northridge, CA 91330-8268, USA
Received:
2
June
2021
Accepted:
13
July
2021
Context. Resistive Ohmic dissipation has been suggested as a mechanism for heating the solar chromosphere, but few studies have established this association.
Aims. We aim to determine how Ohmic dissipation by electric currents can heat the solar chromosphere.
Methods. We combine high-resolution spectroscopic Ca II data from the Dunn Solar Telescope and vector magnetic field observations from the Helioseismic and Magnetic Imager (HMI) to investigate thermal enhancements in a sunspot light bridge. The photospheric magnetic field from HMI was extrapolated to the corona using a non-force-free field technique that provided the three-dimensional distribution of electric currents, while an inversion of the chromospheric Ca II line with a local thermodynamic equilibrium and a nonlocal thermodynamic equilibrium spectral archive delivered the temperature stratifications from the photosphere to the chromosphere.
Results. We find that the light bridge is a site of strong electric currents, of about 0.3 A m−2 at the bottom boundary, which extend to about 0.7 Mm while decreasing monotonically with height. These currents produce a chromospheric temperature excess of about 600−800 K relative to the umbra. Only the light bridge, where relatively weak and highly inclined magnetic fields emerge over a duration of 13 h, shows a spatial coincidence of thermal enhancements and electric currents. The temperature enhancements and the Cowling heating are primarily confined to a height range of 0.4−0.7 Mm above the light bridge. The corresponding increase in internal energy of 200 J m−3 can be supplied by the heating in about 10 min.
Conclusions. Our results provide direct evidence for currents heating the lower solar chromosphere through Ohmic dissipation.
Key words: sunspots / Sun: chromosphere / Sun: corona / Sun: photosphere / Sun: magnetic fields
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.